
UNIVERSITY OF MANCHESTER

School of Computer Science
Kilburn Building

Manchester M13 9PL

LARGE-SCALE

FINITE DIFFERENCE TIME DOMAIN

DATA PROCESSING

USING HIGH PERFORMANCE SYSTEMS

Maksims Abaļenkovs

A dissertation submitted to the University of Manchester
for the degree of Master of Science

in the Faculty of Engineering and Physical Sciences

2007

to Dimitri

Abstract

Design verification of a Vivaldi antenna array has to be performed by the elec-
tromagnetic wave propagation in the time domain. The large-scale Frequency
Dependent – Finite Difference Time Domain (FD-FDTD) numerical calculation
is required for the evaluation of an antenna array structure. Modern numeri-
cal method implementations suffer from the inefficient I/O reducing the overall
computation performace. The practical boundaries of certain supercomputer sys-
tems for the calculation of antenna elements are still unknown.

Therefore the current work addresses (i) the issues of the efficient storage and
post-processing of data produced by the FD-FDTD simulation as well as (ii) test-
ing the potential of two high performance computing systems for running the
simulation code. The project introduces a new way for storing the data by means
of the Hierarchical Data Format 5 (HDF5), which enables the parallelisation and
drastically reduces the running time of data post-processing tasks. The esti-
mation of maximum antenna elements feasible for efficient simulation on the
IBM BlueGene/L (BGL) and Bull systems comprises another achievement of this
work.

i

Declaration

No portion of the work referred to in this thesis has been submitted in support of
an application for another degree or qualification of this or any other university
or other institution of learning.

September 7, 2007
Manchester Maksims Abaļenkovs

iii

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) ei-
ther in full, or of extracts, may be made only in accordance with instructions given
by the Author and lodged in the John Rylands University Library of Manchester.
Details may be obtained from the Librarian. This page must form part of any
such copies made. Further copies (by any process) of copies made in accordance
with such instructions may not be made without the permission (in writing) of
the Author.

The ownership of any intellectual property rights which may be described in this
thesis is vested in the University of Manchester, subject to any prior agreement to
the contrary, and may not be made available for use by third parties without the
written permission of the University, which will prescribe the terms and condi-
tions of any such agreement.

Further information on the conditions under which disclosures and exploitation
may take place is available from the Head of the School of Computer Science.

v

The Author

Being of Latvian nationality the author has started his higher education in the
University of Latvia in the area of Mathematics and Statistics. After one year he
changed his degree to Computer Science and continued his studies at Riga Tech-
nical University. There he gained a broad knowledge in a variety of engineering
subjects as well as obtained a solid grounding in his major in Computer Science.
In two years time he moved to Germany. He finished his undergraduate studies
in Computer Science with a minor in Physics at the University of Düsseldorf.
There he specialised in database systems and computer networks. Studying for
Masters degree at the University of Manchester he became interested in the area
of High Performance Computing and currently intends to pursue a PhD research
in Electrical and Electronic Engineering.

vii

Acknowledgements

The author would like to thank his supervisor Dr Fumie Costen for her enthusi-
asm, energy, guidance, motivation and faith, the HDF Group for their scientific
data format and in particular Elena Pourmal and Barbara Jones for their sup-
port in the HDF5 installation process and library usage, Hopko Meijering for the
introduction to the IBM BlueGene/L system and help on the job management
procedure, Horace technical support team at Manchester Computing and espe-
cially Fiona Cook and Craig Lucas for their patience, guidance and willingness to
help, João Costa for the explanation of FD-FDTD simulation software and raising
interesting questions, Yongwei Zhang and Christos Argyropoulos for the discus-
sion of an antenna functionality, Olga Kaiser for her mathematical and numerical
expertise, Vadims Adamovičs for his advice on the software development and
pseudocode review, Wentworth Miller for his inspirational intelligence, and par-
ents for their interest and countenance.

ix

Table of Contents

1 Introduction 1

1.1 Project Scope . 1

1.2 Project Structure . 3

1.3 Ultra Wide Band (UWB) . 3

1.3.1 Definition . 3

1.3.2 Application of UWB . 4

1.4 Summary . 7

2 Numerical Methods 9

2.1 Maxwell’s Equations . 9

2.2 Important Numerical Properties . 10

2.3 Finite Difference Time Domain (FDTD) 12

2.3.1 Description . 12

2.3.2 Mathematical Fundamentals 14

2.4 Frequency Dependent – Finite Difference Time Domain (FD-FDTD) 17

2.4.1 Description . 17

2.4.2 Mathematical Fundamentals 17

xi

xii TABLE OF CONTENTS

2.5 Summary . 19

3 Problem Statement 21

3.1 In-House Software Analysis . 21

3.2 Structure and Character of Produced Data 23

3.3 Data Post-Processing Tasks . 24

3.3.1 Plot Production . 24

3.3.2 Visualisation Production . 26

3.3.3 Timing Results . 30

3.4 Summary . 31

4 Scientific Data Processing 33

4.1 Current Situation . 33

4.2 Data Formats . 36

4.2.1 Network Common Data Form (NetCDF) 36

4.2.2 Hierarchical Data Format 5 (HDF5) 38

4.2.3 Alternatives . 40

4.3 Format Performance . 41

4.4 Format Choice . 44

4.5 Summary . 45

5 Development of Post-Processing Utilities 47

5.1 Output File Structure in HDF5 . 48

5.2 Modification of Existing Software . 49

5.3 Possible Parallelisation Approaches 51

TABLE OF CONTENTS xiii

5.3.1 Case I – Plotting Entire Data Domain 52

5.3.2 Case II – Plotting Data Subdomain 53

5.4 New Plot Production . 54

5.4.1 Design . 54

5.4.2 Implementation . 56

5.4.3 Drawbacks . 60

5.4.4 Jumping Approach . 60

5.4.5 Parallelisation . 62

5.5 New Visualisation Production . 62

5.5.1 Improvement of Sequential Version 62

5.5.2 Parallelisation . 64

5.6 Summary . 65

6 Experiments on High Performance Computing Systems 69

6.1 Horace . 69

6.1.1 Architecture . 69

6.1.2 Current Experience . 70

6.1.3 Drawbacks . 70

6.1.4 Potential Performance . 71

6.2 IBM BlueGene/L . 74

6.2.1 Architecture . 74

6.2.2 Current Experience . 76

6.2.3 Drawbacks . 78

xiv TABLE OF CONTENTS

6.2.4 Potential Performance . 78

6.3 Summary . 79

7 Future Work 81

7.1 Project Improvement . 81

7.2 Conclusion . 83

Appendix A – Program Files 85

Appendix B – Software Installation 89

SZip . 89

HDF5 . 90

Appendix C – Job Management Commands 93

Horace . 93

IBM BlueGene/L . 96

Appendix D – Source Code 99

Modified FD-FDTD Simulation Program fdtd-mpi.F90, Data Output Part 99

New Point Plotting Utility plotPoints.F90 107

Original Plane Visualisation Utility visualisePlane.csh 115

Compilation Script for Parallel HDF5 Programs h5compile.sh 120

Total Word Count: 23610

List of Figures

1.1 UWB in Structure Design . 5

1.2 Vivaldi Antenna . 5

1.3 Radio Wave Propagation from a Mobile Phone 6

1.4 Sensing EM-wave Propagation in a Human Brain 6

1.5 3D Medical Image Reconstruction Using the UWB Radar 7

1.6 Cell Diagnostics . 7

2.1 Yee Unit Cell . 13

3.1 Ez Electric Field Values in Time for a Grid Point p(166, 13, 95) 26

3.2 Visualisation Frame of the Wave Propagation for Time Step t = 150 30

4.1 HDF5 Object Hierarchy . 39

4.2 HDF5 Special Storage Options . 39

4.3 HDF5 Spatial Subsetting Operations 40

4.4 Sequential Reading and Writing Benchmarks 43

4.5 Parallel Writing Benchmarks . 43

4.6 Contiguous Dataset Benchmarks . 43

4.7 Multiple Dataset Benchmarks . 44

xv

xvi LIST OF FIGURES

6.1 Computing Node Architecture in Horace 70

6.2 Operating Memory Requirements 73

6.3 Output File Size According to Grid Dimension 73

6.4 Total Processing Time of 1 Simulation Timestep 74

6.5 Simulation Time Requirements According to Grid Dimension . . . 75

6.6 IBM BlueGene/L System Overview 76

List of Tables

3.1 Output Data File Structure . 23

3.2 Plot File Structure . 25

3.3 PGM File Structure . 29

3.4 PPM File Structure . 29

3.5 System Specifications . 30

3.6 Plot and Visualisation Production Experiments 31

4.1 Scientific Data Format Comparison 42

5.1 Structure of Simulation Parameter File params 58

5.2 Structure of Point Coordinate File points 59

5.3 Plot File Names . 59

5.4 Output Data File Structure . 61

xvii

List of Algorithms

3.1 FD-FDTD Method Implementation 22
3.2 Plot Production . 24
3.3 Visualisation Production . 27
5.1 HDF5 Output File Production . 50
5.2 New Plot Production . 54
5.3 Improved Visualisation Production, Variant A 63
5.4 Improved Visualisation Production, Variant B 64
5.5 New Visualisation Production . 66

xix

Chapter 1

Introduction

Chapter 1 introduces the area of computational electromagnetics. It defines the
scope of the project and briefly describes the dissertation’s structure. Afterwards
follows a definition of an Ultra Wide Band. A section on applications of Ultra
Wide Band concludes this chapter.

1.1 Project Scope

Simulation of Ultra Wide Band wave propagation under realistic conditions is
a challenging task. Classical Maxwell’s equations theoretically describe the ef-
fects of the electromagnetic wave dissemination. A number of numerical meth-
ods were developed for the calculation of Maxwell’s equations for current indus-
trial problems. Finding a practical solution requires solving a complex system
of partial differential equations which puts high demands on the computational
resources. High performance computing machines with large amounts of operat-
ing memory and processing power are usually used for faster calculation of these
equations.

Classical Maxwell’s equations describe the rise of electric and magnetic fields
caused by static or moving electric charges. These equations provide a theoret-
ical solution to a given problem. However, there is a strong need to obtain the
numerical solution that could be used in practice. Different numerical methods
were developed to approximate the theoretical solution to a practical one: Finite
Difference Time Domain (FDTD), Frequency Dependent – Finite Difference Time

1

2 Chapter 1. Introduction

Domain (FD-FDTD), Alternating-Direction Implicit – Finite Difference Time Do-
main (ADI-FDTD), Finite Element Analysis (FEA) and many others.

The research group uses the FD-FDTD, an enhanced version of FDTD, which
allows simulating the way a medium responds to the propagation of electromag-
netic waves. There is a program written in Fortran. This code implements the
simulation method and is capable of exploiting parallelism in the FD-FDTD algo-
rithm. This enables running of the simulation on multiple computers and espe-
cially high performance systems.

The in-house software produces a number of output files, which represent the
electromagnetic field values for a given time step of a simulation. The next stage
of the simulation is the data post-processing. The temporal information con-
tained in the output files should be extracted and transformed into spatial do-
main. The post-processing consists of two independent phases: (i) plotting of
selected points within the simulation grid space and (ii) visualisation of wave
propagation in a 2-dimensional plane – xy, yz or xz.

Initially the simulation data was stored in ASCII format and the post-processing
tasks were performed by means of simple but highly inefficient bash scripts. This
research focuses on the optimisation of the data post-processing methods. First,
a number of scientific data formats were examined to provide an efficient stor-
age and fast access to the simulation data. An HDF5 file format was selected
because of its support for parallelism, high access speed and flexibility. During
the project an output file structure using the HDF5 building blocks is designed
and the in-house software is changed to produce the HDF5 output files. The next
step is implementing the two phases of post-processing: point plotting and plane
visualisation. A number of Fortran subroutines is introduced to accomplish these
tasks.

Various performance tests on different hardware platforms are conducted to test
the novel HDF5 code. A detailed comparison of the original ASCII/bash based
post-processing with the new HDF5/Fortran/MPI based is made. The FD-FDTD
simulation is usually performed for a high precision space and time grids and
is run on super computers. The parallel power of high performance computing
could be used for the data post-processing tasks as well. The performance exper-
iments are run on the IBM BlueGene/L in Groningen (Netherlands) and on Bull
system in Manchester (UK). Especially interesting is the comparison of these two
machines because they have different architecture and hardware components.

1.2. Project Structure 3

The results of the tests also highlight the possibility for further improvement and
optimisation of data production and post-processing tasks.

1.2 Project Structure

The structure of the dissertation is as follows. The next sections will describe
the nature of the Ultra Wide Band and the areas of its application. Chapter 2
introduces the Maxwell’s equations and after a short discussion on important
numerical properties gives an overview and mathematical fundamentals of two
numerical schemes important for current work – FDTD and FD-FDTD. The data
post-processing problem is identified and analysed in detail in Chapter 3. Current
situation in the research area of scientific data processing is presented in Chap-
ter 4. It also contains a broad description of modern data formats used in scientific
domain. The final format choice is justified by format performance benchmarks
in Section 4.3.

Chapter 5 contains a thorough description of the project implementation. It in-
troduces the new output file structure and the design of a novel algorithm for
point plotting. Very interesting is the Section 5.3 which discusses possible code
parallelisation approaches and gives the reasoning behind them. Chapter 6 con-
tains the description of high performance computing systems used within this
project. A broad performance testing of the super computers and estimation of
maximum amount of Vivaldi antenna elements available for efficient simulation
on these systems could be found in this chapter. Finally, Chapter 7 concludes the
thesis with plans for the future work on overall project improvement.

1.3 Ultra Wide Band (UWB)

1.3.1 Definition

Ultra Wide Band (UWB) is any signal occupying width of 500 MHz or more in 3.1
to 10.3 GHz spectrum region. UWB signals obtain a number of interesting char-
acteristics. Signals in this region use high-speed narrow pulses for data transmis-
sion. There is a relatively low interference level between communication parties

4 Chapter 1. Introduction

sharing the UWB spectrum. This allows to build UWB systems using simple
hardware.

1.3.2 Application of UWB

The applications of FDTD algorithm exist for a very wide frequency range with
frequencies varying from the very low to the optical level values. The circuit
simulation, waveguide propagation, modelling of antennas and antenna arrays,
studies of electromagnetic compatibility and pulse effects all are based on the
FDTD. Combination of Maxwell’s equations together with heat and energy trans-
port equations plugged into FDTD helps to study bioelectromagnetic problems.
These include hyperthermia, cancer detection, bioeffects of electromagnetic waves
and Specific Absorption Rate (SAR) calculations. Engineering of metamaterials,
materials which exhibit exotic electromagnetic properties not found in natural
materials and compounds, is another application field of the FDTD method.

This project focuses on the application of FD-FDTD method for the calculation
of UWB propagation. The main program used in the current work is aimed for
the calculation of electromagnetic wave effects in the vicinity of a single Vivaldi
antenna and Vivaldi antenna arrays.

UWB simulation is applied in waveguide1 and Photonic Band Gap (PBG)2 design.
Initially the shape and material of these structures have to be known. The UWB is
used to measure the electromagnetic field distribution and resonant frequencies
inside of a waveguide. Correct measurement of these quantities is vital in future
waveguide’s construction. Figure 1.1(a) depicts a basic waveguide3. In case of
PBG the electromagnetic wave simulation helps to measure the transmission and
refletion coefficients on the surface and inwards of the structure. Figure 1.1(b)
shows a PGB built of aluminium rods4.

Vivaldi antenna5 design and validation is another area of UWB research applica-
tion. Analysis of radiation pattern around the antenna is conducted by means of

1Waveguide – is an artificial channel for guided dissemination of waves.
2Photonic Band Gap (PBG) – is a periodic optical structure used to influence the motion of

photons.
3www.microwaves101.com/encyclopedia/images/Waveguides
4www.public.iastate.edu/˜cmpexp/groups/ho/pbg.html
5Vivaldi antenna – is a special sort of antennas with improved directivity. Vivaldi antennas are

best suited for transmission of broad spectrum signals.

www.microwaves101.com/encyclopedia/images/Waveguides
www.public.iastate.edu/~cmpexp/groups/ho/pbg.html

1.3. Ultra Wide Band (UWB) 5

(a) Basic Waveguide (b) Aluminium PBG Rod

Figure 1.1: UWB in Structure Design

FD-FDTD method and is important while constructing a new antenna element.
Simulation of electromagnetic wave propagation for a Vivaldi antenna is one of
the major interest areas of the research group. The main program used within
this project calculates the wave emission of a Vivaldi antenna. Figure 1.2(a) is a
schematical representation of a Vivaldi antenna [Zha07]. Figure 1.2(b) depicts a
complete Vivaldi antenna array which consists of 97 elements6.

(a) Vivaldi Antenna Scheme (b) Vivaldi Antenna Array

Figure 1.2: Vivaldi Antenna

UWB simulation is also used in medical research area. Measuring the electro-
magnetic field distribution in the vicinity of a human body helps to calculate the

6www.astron.nl

www.astron.nl

6 Chapter 1. Introduction

Specific Absorption Rate (SAR)7 value. Figure 1.3 presents a visualisation frame
from the simulation of a mobile phone wave emission8.

Figure 1.3: Radio Wave Propagation from a Mobile Phone

Medical image reconstruction could be done with help of UWB analysis. Differ-
ent layers of human body are studied using the UWB systems. There are two sorts
of simulation tasks known as forward and backward problems. The first stands for
the emulation of UWB emission from a wave source, e.g. an antenna. The last cor-
responds to the analysis of electromagnetic field values at the receiver. Figure 1.4
gives a good example of a forward problem. It shows a conceptual schema of
wave dissemination in a human brain.

Figure 1.4: Sensing EM-wave Propagation in a Human Brain

7Specific Absorption Rate (SAR) – a measurement of a radio wave energy absorbed by the
human body.

8www.mobile-review.com/articles/2002/safety-en.shtml

www.mobile-review.com/articles/2002/safety-en.shtml

1.4. Summary 7

Main phases of a backward problem are depicted in Figure 1.5. A signal emitted
from a wave source goes through a human body and returns to the receiver. The
received signal processing is used for non-destructive image reconstruction, e.g.
medical imaging based on microwave propagation is applied in cancer detection.

Figure 1.5: 3D Medical Image Reconstruction Using the UWB Radar

UWB is also applied in cell diagnostics research. The study of cell contents ob-
tained by light pattern scattered from a cell helps identifying healthy and cancer-
ous cells. Figure 1.6 gives an example of inner cell structure received by an UWB
medical sensor9.

(a) Healthy Cell (b) Cancerous Cell

Figure 1.6: Cell Diagnostics

1.4 Summary

A variety of numerical methods exists for the approximated solution of Maxwell’s
equations. The FD-FDTD scheme is capable of electromagnetic simulation in-
cluding the medium characteristics. UWB is any signal broader or equal to 500 MHz
in the 3.1 to 10.3 GHz frequency range. The UWB simulation is applied in many
different areas such as waveguide and PBG structure design, Vivaldi antenna

9www.cellsalive.com

www.cellsalive.com

8 Chapter 1. Introduction

element and array construction, SAR calculation and cancer detection. High
specification supercomputers are usually involved in running FDTD simulations.
Current research focuses on the efficiency of the FD-FDTD data production and
post-processing tasks during the simulation of wave propagation around Vivaldi
antennas.

Chapter 2

Numerical Methods

Numerical method is a mathematical scheme specially designed for finding prac-
tical solutions to theoretical problems. A numerical algorithm is often used to
solve very complex problems. In this case a numerical method only approaches
an ideal theoretical solution. A series of high order approximations and alge-
braic operations such as matrix and vector multiplication frequently comprise a
numerical algorithm.

2.1 Maxwell’s Equations

Maxwell’s equations define the character of electric and magnetic fields caused
by static or moving charges. The electromagnetic fields are able to self-maintain
and could also exist without charges or currents. The Maxwell’s equations are:

∇ · ~D = ρ (2.1)

∇ · ~B = 0 (2.2)

−∇× ~E = ∂t
~B (2.3)

∇× ~H = ~J + ∂t
~D (2.4)

~D = ε~E (2.5)
~B = µ ~H (2.6)

9

10 Chapter 2. Numerical Methods

where

ρ – volume charge density,
~J – volume current density,
~D – displacement vector,
~E – electric field vector,
~B – magnetic flux density vector,
~H – magnetic field vector,
ε – medium permittivity,
µ – medium permeability

All four vector field magnitudes ~D, ~E , ~B and ~H are functions of space and time
(~r, t). Equations 2.5 and 2.6 are called the constitutive relationships. These equa-
tions have the above form for the linear isotropic non-dispersive medium. Elec-
tromagnetic field in this type of medium always changes the same way indepen-
dent of direction and a test particle’s orientation. The constitutive relationships
reflect properties of the medium, wherein the electromagnetic waves are propa-
gating. Permittivity ε indicates the electric and permeability µ the magnetic prop-
erties of the medium. According to the values of ε and µ the medium influences
the propagation character of the electromagnetic waves.

2.2 Important Numerical Properties

A good numerical approximation scheme for solving partial differential equa-
tions (PDEs) should obey the Courant-Friedrichs-Lewy (CFL) condition and three
important mathematical properties. It should be consistent, convergent and sta-
ble [Cos05].

Courant-Friedrichs-Levy (CFL) Condition is a special convergence criterion for
a PDE-solving algorithm. It sets the upper limit on a time step’s size in an
explicit numerical scheme. This means the discrete time step value used
in the calculation should be less than a certain maximum. The CFL condi-
tion demands a time step to be smaller than the time a wave needs to cross
the distance between two neighbouring space grid points. Equations 2.7
and 2.8 define the CFL condition for the general one-dimensional and three-
dimensional cases respectively. The equations couple time step and grid

2.2. Important Numerical Properties 11

unit length values together. The numerical method will produce correct re-
sults when the CFL condition is maintained. The solution will diverge or it
will not exist if the time step value exceeds the limit set by the equation.

u∆t

∆r
< C (2.7)

ux∆t

∆x
+
uy∆t

∆y
+
uz∆t

∆z
< C (2.8)

where

u – electromagnetic wave velocity,
∆t – simulation time step,
∆r – length interval,
C – constant, depending on particular equation

Consistency is reached when the numerical method correctly approximates the
analytical equations in case of progressive refinement of space-time lattice:
∆x,∆y,∆z,∆t→ 0.

Convergence is a stricter property for a numerical scheme. In this case the nu-
merical solution approaches the analytical, when the space-time lattice is
refined at a given space-time point: (x = i∆x, y = j∆y, z = k∆z, t =

n∆t), ∆x,∆y,∆z,∆t→ 0 and i, j, k, n→ 0.

Stability is achieved when the difference of numerical solutions for arbitrary
bounded differences in the initial values is limited in the same way as in the
analytical equations. In general, stability indicates the algorithm’s correct-
ness in case of initial calculation disturbance such as rounding or approx-
imation error. A stable algorithm will produce precise solution despite of
the initial error. In contrary, the error can grow exponentially, widespread to
the complete simulation grid and ruin the method’s precision. Such method
will be named unstable.

There is an active research going on in the area of unconditionally stable al-
gorithm development. Decoupling of time-space interval dependency will
allow relatively free selection of discretisation values. This will result in
more efficient computation resource usage during the simulation. ADI-
FDTD is one of the promising unconditionally stable numerical methods.

12 Chapter 2. Numerical Methods

2.3 Finite Difference Time Domain (FDTD)

2.3.1 Description

The Finite Difference Time Domain (FDTD) is a powerful, yet simple method
for the simulation of the electromagnetic phenomena. It is capable of calcu-
lating the propagation, radiation and scattering effects of the electromagnetic
waves [GBOM04]. FDTD provides the solution of Maxwell’s equations in the
time domain. The method was developed by Kane S. Yee in 1966 [Yee66]. He
was the first to apply the idea of finite differences to the problem of Maxwell’s
equations. The technique gained very high popularity in the scientific simulation
domain. The classical FDTD method has survived a great number of enhance-
ments and adaptations to various research areas. Currently it is the most known
and widely used technique for the simulation of electromagnetic effects.

The general idea of the FDTD consists in replacing the derivatives in Maxwell’s
equations by finite differences. It is assumed, the values of the electromagnetic
fields are known at a given time point. This starting position is called the initial
value problem. The time dependent Maxwell’s equations 2.3, 2.4 and the constitu-
tive relationships 2.5, 2.6 build a system of hyperbolic partial differential equa-
tions. This system provides a unique solution of Maxwell’s equations.

The FDTD defines an orthogonal cubic spatial grid, which is typically divided
into smaller cubes called the Yee unit cells. Figure 2.1 depicts a typical Yee unit cell.
This figure also shows the exact positions at which the electromagnetic values of
E and H are calculated. If the material properties are important the permittivity
ε and permeability µ values should be specified at every grid point.

The FDTD algorithm is explicit, which means that the current field values are
functions of previous values in time. For the simulation of open problems the
Absorbing Boundary Conditions (ABCs) are put in place to terminate the modeled
planes. It must be said that the FDTD method is processor and memory intensive.
Although the modern CPU and memory architectures are constantly improved,
the growing complexity of simulation problems puts new demands on comput-
ing resources.

The second order finite centred approximation is applied to the time derivatives
in Maxwell’s equations. This approximation causes the numerical anisotropy and

2.3. Finite Difference Time Domain (FDTD) 13

Figure 2.1: Yee Unit Cell

dispersion, which result in errors in the solution. These errors are negligible for
electrically small problems. The low-phase techniques are used to reduce the
errors in case of electrically large simulations. One of these techniques lies in
using the higher order approximation to the derivatives.

Simulating materials with geometric inhomogeneities introduces another source
of errors. Earlier a method called staircasing, was used to reflect the geometrical
form of the modeled object. It tried to build a geometric structure of the object
by means of the smallest grid unit, e.g. a Yee cell. Currently a hybridation of
FDTD with FETD, MoMTD and other algorithms for the accurate simulation of
geometric details is used. Instead of globally reducing the cell size of the grid to
represent the geometric form of a model, modern simulation techniques use sub-
gridding and non-uniform meshing. These approaches apply small-size cells only in
places where the representation of fine geometrical details is needed and normal-
size cells elsewhere.

The classical FDTD scheme follows the CFL condition, which states that the time
increment’s value depends on the space increment (see Section 2.2). The criterion
also implies an upper limit to the time increment according to the space incre-
ment’s value. This interdependency of time and space forces the simulation to
use small time increments when a fine grid structure is modeled. And apply-
ing unnecessary small time increment values causes high CPU load during the
simulation.

14 Chapter 2. Numerical Methods

An extensive research in the FDTD field resulted in many research proposals be-
ing made. Some of these proposals focus on the better modelling of the mate-
rial behaviour, whereas others study new methods of terminating the problem
space. The Perfectly Matched Layer (PML) designed by Jean-Pierre Bérenger in
1994 [Bér94] is one of the widely adopted schemes for limiting the simulation grid
space. This method’s core idea is to truncate a Maxwellian medium with a non-
Maxwellian. Where the non-Maxwellian medium perfectly absorbs all frequen-
cies, polarisations and angles of incidence. This makes it a special sort of medium
which completely attenuates all electromagnetic fields propagated within it. Only
a few simulation steps are needed to exterminate any electromagnetic effects. Af-
terwards this absorbing layer is terminated by a perfect electromagnetic conduct-
ing wall (PEC/PMC). This last step eliminates the need for high computational
resources in the simulation.

Nowadays a strong interdisciplinary exchange of ideas could be observed in var-
ious research fields applying FDTD. Suggestions from acoustics, computational
fluid dynamics (CFD), quantum physics and many other subjects are being made
to produce a more exact simulation algorithm. An important quality of the nu-
merical simulation is its unconditional stability (refer to Section 2.2). A classical
FDTD approach is stable only if the CFL criterion is maintained. New FDTD
variations, which break the time-space interdependency, are being developed
now [SS95]. Alternating Direction Implicit FDTD (ADI-FDTD) is one of the most
promising unconditionally stable algorithms. It allows simulation of dense spa-
tial grids with large time increments.

2.3.2 Mathematical Fundamentals

Starting with the assumption that currents are ohmic equations 2.9 and 2.10 may
be used to define the electric and magnetic currents.

~J = σ~E (2.9)
~J ∗ = σ∗ ~H (2.10)

Here the magnetic current is taken for the symmetry reasons and symbols σ
and σ∗ stand for electric and magnetic conductivities. The constitutive relation-

2.3. Finite Difference Time Domain (FDTD) 15

ships 2.5 and 2.6 are true for the linear, isotropic and non-dispersive medium.
This allows to omit the ~D and ~B in further calculations. Applying the ohmic cur-
rent equations 2.9 and 2.10 to the time dependent Maxwell’s equations 2.3 and 2.4
sets the Maxwell’s equations into the E-H form:

−∂̃r
~E = σ∗ ~H + µ∂t

~H, (2.11)

∂̃r
~H = σ~E + ε∂t

~E , (2.12)

∂̃r =

 0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

 (2.13)

Recalling the definitions for the centred difference 2.14 and centred average 2.15
operators it is possible to refer to Taylor series expansion, which states that δvf(v)

is a second order approximation to ∂vf(v) and avf(v) to the identity operation
Ĩf(v) = f(v).

δvf(v) =
f(v + ∆v

2
)− f(v − ∆v

2
)

∆v
, (2.14)

avf(v) =
f(v + ∆v

2
) + f(v − ∆v

2
)

2
(2.15)

The FDTD method involves space and time discretisations. The space points are
uniformly distributed at integer and semi-integer multiples of ∆x, ∆y and ∆z

values in each direction of the grid. Similarly, the time is discretised at integer
and semi-integer multiples of ∆t value. Then the electromagnetic field’s value
at any spatial-temporal localion could be described by the following universal
notation:

Ψn
i,j,k ≡ Ψ(x = i∆x, y = j∆y, z = k∆z, t = n∆t) (2.16)

Now the derivatives in the E-H Maxwell’s equations 2.11 and 2.12 should be re-
placed with the centred difference operator δr and the conductivity averaged with
at. These substitution obtains the classical FDTD method’s equations in the gen-
eral form:

16 Chapter 2. Numerical Methods

−δ̃r ~En
i,j,k = σ∗i,j,kat

~En
i,j,k + µi,j,kδt ~H

n
i,j,k (2.17)

δ̃r ~H
n
i,j,k = σi,j,kat

~En
i,j,k + εi,j,kδt ~E

n
i,j,k (2.18)

δ̃r =

 0 −δz δy

δz 0 −δx
−δy δx 0

 (2.19)

Here the numerical curl operator δ̃r (2.19) approximates the differentiation opera-
tor ∂̃r (2.13). The media heterogeneity in the FDTD space is obtained by sampling
the analytical constitutive parameters ε, µ, σ and σ∗ at every grid point:

εi,j,k = ε(x = i∆x, y = i∆y, z = i∆z) . . . (2.20)

Notice that 2.17 and 2.18 do not involve all six electromagnetic field components
defined at every space point sampled with ∆x

2
, ∆y

2
and ∆z

2
values. Using only the

field values specified in the Yee unit cell (refer to Figure2.1) allows to calculate 6
times coarser space grid.

Finally, taking the generalised FDTD equations 2.17 and 2.18, and sampling the
electric field values at the semi-integer multiples of the time increment ∆t and
magnetic field values at the integer multiples will result in the marching-on-in-
time algorithm:

~E
n+1/2
i,j,k =

εi,j,k − σi,j,k∆t/2

εi,j,k + σi,j,k∆t/2
~E

n−1/2
i,j,k +

∆t

εi,j,k + σi,j,k∆t/2
δ̃r ~H

n
i,j,k (2.21)

~Hn+1
i,j,k =

µi,j,k − σ∗i,j,k∆t/2
µi,j,k + σ∗i,j,k∆t/2

~Hn
i,j,k −

∆t

µi,j,k + σ∗i,j,k∆t/2
δ̃r ~E

n+1/2
i,j,k (2.22)

Here n represents the integer and i, j and k both integer and semi-integer values
according to the field positions in the Yee unit cell on the Figure 2.1.

The classical FDTD scheme is self-maintained. Sampling the analytical initial
conditions provides the numerical values for the start of the FDTD simulation. It
must be said that the FDTD offers excellent opportunities for building higher or-

2.4. Frequency Dependent – Finite Difference Time Domain (FD-FDTD) 17

der schemes by applying other approximation techniques to the space and time
derivatives ∂r and ∂t. There exist successful FDTD reformulations for other or-
thogonal coordinate systems such as polar and cylindric, and also general curvi-
linear coordinates.

2.4 Frequency Dependent – Finite Difference

Time Domain (FD-FDTD)

2.4.1 Description

The Frequency Dependent – Finite Difference Time Domain (FD-FDTD) is an-
other numerical method for the simulation of electromagnetic effects. Similarly
to the classical FDTD it provides solution to Maxwell’s equations in the time
domain. As well as its predecessor FD-FDTD is an explicit algorithm and the
ABCs should be specified to terminate the open problem space. The main differ-
ence between these methods is that the FD-FDTD variation reflects the simulation
medium properties. This makes the FD-FDTD a more realistic approach for the
electromagnetic simulations. However, this higher precision grade in handling
the simulation medium comes at a price of increased calculation complexity. This
involves more intense computing resource usage and longer processing time.

2.4.2 Mathematical Fundamentals

FD-FDTD considers the medium properties during the electromagnetic field sim-
ulation. To allow this the medium permittivity ε is set to be frequency dependent.
Medium permeability µ stays constant. Permittivity is defined using the Debye
model 2.23 and should be specified at every simulation grid point.

ε = ε0εr = ε0

(
εs +

εs − ε∞
1 + ωτD

− σ
ωε0

)
(2.23)

18 Chapter 2. Numerical Methods

where

εr – relative medium permittivity,
ε0 – free space permittivity,
εs – static relative dielectric constant,
ε∞ – infinite relative dielectric constant,
τD – characteristic relaxation time of the dipole moment,
ω – angular frequency,
 – imaginary unit,
σ – medium conductivity

Applying the Debye model definition of the permittivity to 2.5 will result in the
following equation for the displacement vector ~D:

~D = ε0

(
εs +

εs − ε∞
1 + ωτD

− σ
ωε0

)
~E (2.24)

In addition to standard FDTD equations used to calculate the electromagnetic
field values ~E and ~H (2.21, 2.22), FD-FDTD estimates the displacement vector ~D
at each spatial-temporal increment of the computation. The ~D, ~E and ~H values
calculation advances in a circular fashion. Generally the calculation proceeds
according to the following equations:

∂ ~Dn

∂t
=

[
~A
]
~Hn−1,

∂ ~En

∂t
=

[
~B
]
~Dn,

∂ ~Hn

∂t
=

[
~C
]
~En (2.25)

Where ~A, ~B and ~C denote the spatial differentiation operators. Each of these vari-
ables represent a 3×3 matrix similar to 2.13. And ~D, ~E and ~H are vectorised forms
of displacement, electric and magnetic field values specified by Equations 2.26.
The displacement value ~Dn is computed based on the magnetic field’s value in
the previous time step ~Hn−1.

~D ,

Dx

Dy

Dz

 , ~E ,

Ex

Ey

Ez

 , ~H ,

Hx

Hy

Hz

 (2.26)

2.5. Summary 19

The FD-FDTD marching-on-in-time algorithm could be specified by the following
general equation:

~φn = (Ĩ + ∆t~ψ)~φn−1 (2.27)

Where ~φ represents ~D, ~E or ~H and ~ψ equals to ~A, ~B or ~C. This equation also
highlights the explicit nature of the FD-FDTD method. It could be seen that the
current value ~φn is obtained using ~φ from the previous time step.

2.5 Summary

Numerical method is a mathematical approximation of theoretical equations for
providing practical solutions. Maxwell’s equations specify the behaviour of elec-
tromagnetic fields in space and time domain. Constitutive relationships are im-
portant when the electromagnetic properties of the medium have to be consid-
ered in the simulation. These are omitted in the standard FDTD approach to ob-
tain Maxwell’s equations in the E-H form. Compliance with the CFL condition,
consistency, convergence and stability are important mathematical properties of
each numerical method. Both FDTD and FD-FDTD are conditionally stable and
have interdependent space and time lattices.

Developed in 1966 FDTD still remains the most widely used algorithm for simu-
lation of the electromagnetic wave propagation. Based on Taylor series expansion
and centred difference and average operators it provides approximated solution
of Maxwell’s equations. FD-FDTD method takes into account frequency depen-
dent electric properties of the simulation medium. Applying Debye model for
the calculation of medium permittivity ε FD-FDTD allows to obtain more prac-
tical and precise simulation results but demands more computing and time re-
sources. Current interchange and adaptation of ideas between different research
areas stimulates the development of new FDTD variations and improvements.

Chapter 3

Problem Statement

This chapter gives an overview of the FD-FDTD data post-processing activities.
It describes the initial status of data production and post-processing tools before
the work undertaken in context of this project. Starting with the in-house soft-
ware analysis for the FD-FDTD method implementation, it highlights the struc-
ture and character of the simulation output data. Section 3.3 comprises the core of
this chapter providing a detailed dissection of point plotting and plane visualisa-
tion tasks. Section 3.3.3 contains the experimental and theoretical timing results
for the data post-processing. Finally, the Section 3.4 discusses the performance
measurements regarding the real-world processing requirements and justifies the
need for more efficient parallel implementation.

3.1 In-House Software Analysis

The FD-FDTD numerical algorithm used in the UWB research work is imple-
mented in Fortran programming language. Current simulation program includes
a few C subroutine and directive calls as well as a number of MPI subroutines.
The in-house software code is approximately 2,500 lines long. The C language in-
terface is used for reading the grid space parameter data. Binary input file with an
extention “.bin” specifies medium permittivity ε at each grid point. This bin-file
is processed by four C methods inittable(), tablelookup(), readnext()
and finalizetable(). Also there are #define, #ifdef, #ifndef, #else
and #endif C compiler directives spread across the main code. These are ap-
plied for general program control. The original FD-FDTD algorithm implemen-

21

22 Chapter 3. Problem Statement

tation developed by Arnaud Thiry in context of his PhD dissertation [Thi06] was
successfully parallelised by João Costa during his MSc research work [Cos06].
Native and user-defined MPI subroutines are used for FD-FDTD data scattering
among a number of CPUs for simultaneous multiprocessing.

1: set rx, ry, rz, tmax, nCPUs ← input parameter files
2: initialise simulation variables
3: calculate local rz for each processor in nCPUs → lrz

4: distribute lrz, nimpulses, spacedata between nCPUs

5: for each time step t ∈ [0, tmax] do
6: for each space point px,y,z ∈ [rx, ry, lrz] do
7: calculate ~Dn

x,y,z, ~E
n
x,y,z, ~H

n
x,y,z

8: calculate Absorbing Boundary Condition
9: store ~Dn

x,y,z → ~Dn−1
x,y,z, ~E

n
x,y,z → ~En−1

x,y,z

10: output ~En
x,y,z, ~H

n
x,y,z → data files

11: end for
12: end for

Algorithm 3.1: FD-FDTD Method Implementation

Pseudocode in the Algorithm 3.1 shows the major steps of the FD-FDTD program.
Variables rx, ry and rz denote the x, y and z grid space coordinate ranges, whereas
lrz stands for local z range specified for a particular MPI processor. Parameters
tmax, nCPUs and nimpulses define the maximum number of time steps, processors
and impulses in the simulation. Medium-specific parameters read from a binary
file are represented by a collective notion spacedata.

The FD-FDTD computation proceeds as follows. First the simulation parame-
ters set in a number of input files are read and stored in local variables (line 1,
Alg. 3.1). Afterwards all physical variables needed for the calculation are ini-
tialised (line 2). Then the simulation workload is distributed among the number
of processors (line 4). Currently the processing work is divided according to the
z axis. The local range of z value is calculated depending on an MPI rank of the
processor. It will be stored into an lrz variable (line 3).

After the MPI master processor with rank 0 distributes the local z range lrz,
nimpulses and grid space data between all processors the program enters into the
main simulation phase (lines 5-12). It consists of four loops: the first is for time
step values and others for the grid space coordinates x, y and z. For the sake
of algorithm clearness the three coordinate loops are represented with only one
generalised cycle (line 6). The displacement ~D and electromagnetic field ~E and ~H

values are computed in the main body of the loops (lines 7-10). After the Absorb-

3.2. Structure and Character of Produced Data 23

ing Boundary Condition (ABC) calculation current ~D and ~E values are stored for
the estimation of future ~D, ~E and ~H parameters. Finally, the required simulation
values are output into the data files.

3.2 Structure and Character of Produced Data

The FD-FDTD program produces one output file for each time step at each par-
ticipating processor, e.g. simulation run for 100 time steps at 2 CPUs will create
100 time steps × 2 processors = 200 files. The file name is constructed accord-
ing to the following template: E_field_<time_step>_<rank>.out. The first
name’s part E_field is constant and denotes the field values that were output
in the current simulation, e.g. in this case only electric field E values. Other parts
of the name <time_step> and <rank> show the time step and MPI processor
rank of data kept in a particular file. All output data is stored in the ASCII format.

Space Coordinates Field Values

x y z Ex · · · Hz

1 1 90 -0.15396E+10 · · · -0.15041E+12
...

...
...

...
...

189 467 95 0.13878E+08 · · · 0.13895E+10

Table 3.1: Output Data File Structure

Table 3.1 gives an example of a data file structure. The first three columns specify
the grid space coordinates x, y and z. These are compulsory and always present
in an output file. Afterwards come optional columns with the displacement ~D
and electromagnetic field values ~E and ~H . Maximally there could be up to 9
optional columns storing ~Dx,y,z, ~Ex,y,z and ~Hx,y,z values. It is possible to set the
output field values and coordinate ranges at the beginning of the main program,
e.g. the simulation grid space ranges could be xs, ys, zs ∈ [0, 100] and output
ranges xo, yo, zo ∈ [50, 100], whereas only ~Ez and ~Hz field values will be stored in
data files.

Output of all displacement ~Dx,y,z and all electromagnetic field values ~Ex,y,z and
~Hx,y,z for the entire grid space will is required for the detailed analysis of the UWB
systems. In this case each file will include 12 columns containing the most com-
plete information about the simulation. On the other hand this storage pattern

24 Chapter 3. Problem Statement

will drastically increase the single file’s output time and size.

3.3 Data Post-Processing Tasks

3.3.1 Plot Production

One of the most common data post-processing tasks is the plot production for a
specific space grid point. This is usually needed for the verification of simulation
results. All FD-FDTD data kept in output files is of a spatial character. Recall
that a single file contains the displacement ~D and electromagnetic field ~E and
~H values for the entire grid space. But each file describes the status of a grid
space for a particular time step only. The spatial data has to be transformed into
temporal to construct a plot. This means all simulation files have to be traced for
a given grid space point. Pseudocode in the Algorithm 3.2 explains the process
of plot production.

1: pass x, y, z, col parameters of a grid space point p to gawk
2: pass data files F to gawk
3: for each file f ∈ F do
4: use gawk to find px,y,z,col in f
5: output file index fi and field value vcol → plot.data
6: end for

Algorithm 3.2: Plot Production

Parameters x, y and z are the cartesian coordinates which define the spatial posi-
tion of a grid point p. Variable col sets the target column number, i.e. the file col-
umn from where the field values will be read. For example, if an output file con-
tains data for all electromagnetic fields, setting the target column number to 4 will
result in reading the ~Ex values. A number of simulation data files is represented
with the variable F , whereas f is a single output file and fi denotes an ongoing
file’s index. Variable vcol identifies the electromagnetic field’s value in a given
column. The post-processing results are stored into a file called plot.data.

The algorithm proceeds in the following manner. All parameters required for
plotting: point coordinates x, y, z, target column number col and a set of output
files F are passed to the gawk1 programming language. Afterwards each simu-
lation file f is processed by gawk in search for a point p with a specified position

1gawk – is a special-purpose programming language aimed for flexible manipulation of text

3.3. Data Post-Processing Tasks 25

x, y, z. The file index fi and field value from a given column vcol will be extracted
and saved in plot.data if such point exists in the file f . The algorithm ter-
minates when all the simulation files are successfully processed. The resulting
plot.data file will contain the required field’s values for a static spatial posi-
tion, but for all time steps. While the file index fi represents the changing time
step’s value. This way an electromagnetic behaviour of particular space point
could be tracked throughout the entire FD-FDTD simulation.

The point plotting algorithm is implemented with help of a plotPoint.sh bash2

script. This script requests five command-line arguments:

plotPoint.sh <x> <y> <z> <col> <F>

For example a command launched with the following parameters:

plotPoint.sh 166 13 95 4 E_field_*_0007.out

will produce an output file with the ~Ez values for a point p with x = 166, y = 13

and z = 95. This will be true under assumption that only ~Ez field values were
output during the simulation and all the space points with z = 95 were processed
by a CPU with an MPI rank 7.

Time Step Field Value

fi Ez

1 -1048348.
2 -2929066.
3 -7903632.
...

...
200 -2384146.

Table 3.2: Plot File Structure

Table 3.2 depicts the plot file plot.data structure. In this case the plotPoint.sh
script was executed with the arguments shown above. The initial FD-FDTD sim-
ulation was run for 200 time steps. Finally, the plot.data file could be plotted
by means of a Gnuplot3 utility. Figure 3.1 shows the result of drawing the data

files. gawk is a GNU implementation of Unix programming language awk developed by Al Aho,
Peter Weinberger and Brian Kernighan.

2bash (Bourne-again shell) – is a GNU shell or a command-line interpreter created in 1987 by
Brian Fox. bash is an sh-compatible shell variation, which supports main Korn (ksh) and C shell
(csh) functions.

3Gnuplot – is a portable command-line utility for plotting data and functions in two- or three-
dimensional space. The project started in 1986 and is still under active development.

26 Chapter 3. Problem Statement

file plot.data. In this case the time step value is measured in ∆t units, where
∆t = 1.924 · 10−12 seconds.

-7e+12

-6e+12

-5e+12

-4e+12

-3e+12

-2e+12

-1e+12

 0

 0 20 40 60 80 100 120 140 160 180 200

E
z,

 V
/m

Time Step, Delta t

Ez Electric Field Values in Time for a Grid Point p(166,13,95)

experimental

Figure 3.1: Ez Electric Field Values in Time for a Grid Point p(166, 13, 95)

3.3.2 Visualisation Production

Visualisation production is another frequently used post-processing task. Visu-
alisation is needed for proofing the correctness of the FD-FDTD simulation. In
contrary to the static plot, visualisation offers an animated representation of sig-
nal propagation along one of the simulation planes. Similar to the plot production
the visualisation demands the FD-FDTD data to be transformed from spatial into
temporal domain. Plotting the ~D, ~E or ~H values in time is merely a collection of
points connected into a line on the graph.

Whereas plotting requires only two parameters: time step and field value, vi-
sualisation occurs in a three-dimensional space and needs five parameters: time
step, x, y, z space point coordinates and field value. Currently one of the space
point coordinates is kept constant and the wave propagation is performed in a
two-dimensional plane. The strength of the electromagnetic signal in the anima-
tion is presented with colour: red being the most intensive, green – moderate and
blue – the weakest. Pseudocode in the Algorithm 3.3 shows the general steps of
visualisation production.

3.3. Data Post-Processing Tasks 27

1: pass coordinate value va3 , processor rank r, data files F to gawk
2: for each file fr ∈ F do
3: use gawk to find plane la1,a2 specified by va3

4: output e→ file.pgm
5: for each file column c ∈ (ca1 , ca2 , ce) do
6: use sort to find vmax,c, vmin,c

7: calculate (vmax,c − vmin,c + 1)→ cgc

8: if (cgc > gc) then
9: replace gc with cgc in file.pgm

10: end if
11: end for
12: use Fortran program to convert file.pgm→ file.ppm
13: end for
14: use ImageMagick to convert *.ppm→ movie.mpeg

Algorithm 3.3: Visualisation Production

Parameters a1, a2 and a3 in the pseudocode denote the cartesian coordinate axes,
e.g. a1 = x, a2 = y and a3 = z. Whereas a is a general notion for any possible
axis. Variable v stands for a coordinate value. MPI processor rank is specified
by the parameter r. A subset of FD-FDTD data files used in the process of vi-
sualisation production is set by variable F , while fr stands for a particular file
initially produced by a CPU with rank r. Parameter l with two indices written
in subscript defines the target visualisation plane. Variable e represents a generic
electromagnetic field’s value ~E or ~H . This is the actual field value aimed for an-
imation. Notion c specifies the processed column in a file fr. The target column
could be either the coordinate axis a1, a2, a3 or the electromagnetic field e. Param-
eters gc and cgc denote the value range in a particular file column c, whereas gc is
the value stored in the pgm-file and cgc is the currently calculated value range for
a particular file fr.

The visualisation of signal propagation is produced in the following way. First,
the coordinate value of one of the simulation dimensions va3 is passed to gawk
programming language. Parameter va3 sets the target visualisation plane. In the
case shown it will be the value in the z axis. This means the visualisation will
be produced in the a1-a2 plane, i.e. the x-y plane. The processor rank r and the
data files F are also submitted to gawk. Parameter r tells the gawk to search for
the target information in those files in F , that were produced by the specified
processor. Only those files will contain the data required.

Then each file fr in the given subset F is traced by gawk. As soon as the pro-

28 Chapter 3. Problem Statement

gramming language finds the given plane la1,a2 , the required electromagnetic field
value e is output to the pgm-file.4 Afterwards the program enters into a short loop
to conduct a series of similar actions for each target column of the file fr. First the
coordinate axis a1 and a2 and then the electromangenic field value e column are
traced. The sort5 utility is applied to find the maximum and minimum values
vmax, vmin of a column c. After the calculation of current value range cgc, it is
compared to the respective file value range gc. If the current range cgc appears to
be larger, it replaces the gc value in the pgm-file.

After the file fr is successfully processed by gawk and sort, an in-house For-
tran program called pgm2ppm.f is applied to the resulting pgm-file to convert it
into a ppm-file6 file.ppm. The last stage of the visualisation production is the
PPM to MPEG file conversion, which is performed by means of an ImageMagick7

convert utility. This step transforms the number of static signal representations
in PPM format into an animated MPEG wave propagation movie.mpeg.

The C shell8 script visualisePlane.csh implements the plane visualisation
algorithm. This program requests two parameters <plane> and <rank>, which
specify the desired visualisation plane and the MPI processor rank for the subset
of target out-files. The command-line arguments <plane> and <rank> refer to
the va3 and r variables in the Algorithm 3.3. The FD-FDTD simulation files F
addressed by the program will be all out-files in the current directory. The script
is usually launched as follows:

visualisePlane.csh <plane> <rank>

For example a command run with the given parameters:

visualisePlane.csh 95 0007

will animate the wave propagation in the x-y plane, where z = 95 and the CPU
rank equals to 7. Tables 3.3 and 3.4 give an example of the PGM and PPM file

4PGM (Portable Grayscale Map) – is a lowest common denominator grayscale image format.
It uses 8 bits to store 1 pixel of information.

5sort – is a standard Unix command-line utility for sorting files and data.
6PPM (Portable Pixel Map) – is a lowest common denominator colour image format. It uses

24 bits to store 1 pixel of information: 8 bits for each of the key colours – red, green and blue.
7ImageMagick – is a comprehensive set of command-line utilities for manipulation of bitmap

images. Software implementations exist for all major operating systems as well as the interfaces
supporting a wide variety of modern programming languages.

8C Shell (csh) – is a Unix shell with the syntax modelled after C programming language. It was
developed by Bill Joy at the University of California at Berkeley.

3.3. Data Post-Processing Tasks 29

contents. Both PGM and PPM formats used for the visualisation production task
are the plain format versions. The PGM and PPM file structures are similar. First
row occupies a ”magic number“, which identifies the file type. The next row
is a comment preceded by a hash sign. Then follow the coordinate axis ranges
ga1 , ga2 . The electromagnetic field value range ge is stored afterwards. All other
values in the file show the electromagnetic field’s strength for the complete grid
space. Figure 3.2 depicts a single PPM file for the time step t = 150. Every PPM
file is one visualisation frame. Converted into MPEG format, the entire collection
of PPM files comprises the animation of the wave propagation. There is no signal
within the vertical and horizontal white lines on the image. This is because these
lines represent the metal body of the actual Vivaldi antenna, which emits the
signal.

P2
test
467 189
31

0
...
22
24
31
...
0

Table 3.3: PGM File Structure

P3
test
467 189
255

0 0 0
...

...
...

199 255 55
131 255 123
99 255 155
...

...
...

0 0 0

Table 3.4: PPM File Structure

30 Chapter 3. Problem Statement

Figure 3.2: Visualisation Frame of the Wave Propagation for Time Step t = 150

3.3.3 Timing Results

A series of performance experiments for plot and visualisation production were
run on three machines in the local laboratory: 25 and 36, 55. The research ma-
chines are named by the last numbers of their IP addresses. The detailed spec-
ifications of these test systems are given in the Table 3.5. System 55 is a lap-
top. The FD-FDTD simulation data used for post-processing tasks was also pro-
duced in the local cluster. This simulation was run for 200 time steps t ∈ [0, 199],
with the grid space of 189 × 467 × 5, whereas x ∈ [1, 189], y ∈ [1, 467] and
z ∈ [96, 100]. The resulting output file contained the x, y, z space coordinates as
well as the electric field’s Ez values. In total each simulation’s out-file consisted
of 189 × 467 × 5 = 441, 315 text lines and occupied approximately 10 MB of disk
space.

Name Operating System Kernel Ver. CPU Core Speed, GHz RAM, GB L2-Cache, KB

25 openSuSE 10.2 (i586) 2.6.18.8-0.1-def. AMD Athlon XP 2000+ 1 1.667 2.0 1 × 256
36 openSuSE 10.2 (X86-64) 2.6.18.8-0.1-def. AMD Athlon 64 X2 4200+ 2 2.200 4.0 2 × 512
55 openSuSE 10.2 (X86-64) 2.6.18.8-0.3-def. Intel Core 2 Duo T5500 2 1.667 1.0 1 × 2048

Table 3.5: System Specifications

Table 3.6 summarises the timing results measured on the test systems. Table row
”Columns“ specifies the number of columns in the FD-FDTD output file: 4 –
refers to x, y, z, ~Ez; 9 − x, y, z, ~Ex,y,z, ~Hx,y,z; 12 − x, y, z, ~Dx,y,z, ~Ex,y,z, ~Hx,y,z. The
plot and visualisation time measurements for 4-column files are the only results
obtained experimentally. The 4-column time values given in the Table 3.6 are the
averaged timings of three independent experiments. All other measurement data
(for 9- and 12-column files) was estimated theoretically based on the experimental

3.4. Summary 31

timings.

Plot Visualisation

Columns 4 9 12 4 9 12

25 3:44 8:24 11:12 1:01:57 2:19:23 3:05:51
36 1:26 3:14 4:18 16:18 36:41 48:54
55 1:35 3:34 4:45 20:05 45:11 1:00:15

Table 3.6: Plot and Visualisation Production Experiments

Analysing the performance data it is possible to make a number of conclusions.
The dual core 64-bit machine with an appropriate operating system gives almost a
triple performance improvement: 1:26 compared to 3:44 for plot production with
a 4-column output file. In case of visualisation production the performace dif-
ference rises to the quadruple timing results: 16:18 on a dual core against 1:01:57
on a single core machine. The CPU frequency and the cache size are vital for the
speed of post-processing. However, the amount of available RAM is of a sec-
ondary importance. Even though the 36th machine has 4 times more operating
memory – 4.0 GB compared to 1.0 GB on the 55th it was not able to drastically
outperform the system 55.

Also there was an assumption that the 36th was producing the plots and visuali-
sations faster because the FD-FDTD data was stored on the local disk. In contrary
the 25th had to acquire the output files via a LAN. This assumption was dis-
proved by another test on the 25th with the simulation data and post-processing
scripts stored on the local disk area of the 25th. In that case the post-processing
timing results on the 25 varied in terms of a few minutes. This allows to state that
the network communication time during the data post-processing is negligible
compared to the entire amount of time required to produce a plot or a visualisa-
tion.

3.4 Summary

The in-house software implementing the FD-FDTD numerical method is written
in Fortran using C and MPI subroutines. The medium permittivity parameter ε
specified for every space grid point is stored in the binary file param00000.bin.
The FD-FDTD simulation produces the 4- to 12-column large data files in ASCII

32 Chapter 3. Problem Statement

format, whereas the first three columns contain the x, y, z grid space cartesian co-
ordinates and the remaining optional columns specify the displacement ~D and
electromagnetic field ~E, ~H values. Both plot and visualisation production are re-
quired for the verification and better representation of the FD-FDTD simulation
data. The post-processing tasks transform the spatial data character into tempo-
ral. While the plot shows a signal propagation for a fixed grid space point, the
visualisation offers an animation of electromagnetic wave in a given plane. It also
highlights the signal’s strength with colour.

Although, the data post-processing on a high specification 64-bit dual core ma-
chine is three to four times faster than on a modest single core system, the per-
formance gain is not enough for plotting and animating the real-world FD-FDTD
data. The practical data post-processing usually requires the 9-column large files
from the 10,000 time step long simulation. The file single file size in that case
grows up to 1 GB. Considering the 200 time step measurements for the 9-column
files on the high specification system still requires 3:14 and 36:41 for plot and
visualisation production tasks.

This means storing the simulation data in the ASCII form is not efficient. There
are alternative file formats developed specifically for scientific data storage. Fur-
thermore, the data post-processing based on standard Unix implementations of
gawk programming language and sort utility is not appropriate for large-scale
FD-FDTD data processing. One of the major aims of this research work is the
development of more efficient parallel data-postprocessing implementations, ca-
pable of running on High Performance Computing (HPC) systems.

Chapter 4

Scientific Data Processing

This chapter begins with discussion on the current status of the scientific data
processing area. It also highlights the major development trends in the scientific
data manipulation domain. Then the modern special-purpose data formats are
described. Another section is focused on the format performance issues. Final
thoughts on the format choice for this project and the justification of this decision
conclude the chapter.

4.1 Current Situation

The character of contemporary scientific data determines the data structures used
for data storage. Typical research data is usually kept in multidimensional arrays,
tables of records and images. Among the major challenges the scientific comput-
ing faces nowadays are growing data complexity, tremendous data volumes, and
the need for parallel, remote and distributed data processing. Metadata is one of
the instruments for managing large amounts of data. The scientific community
becomes aware of the need for metadata, the aspects of its usage and the benefits
it brings to the research.

The scientific data volumes are doubling each year. There is a strong need for
dataset integration, better data exploration and interactive analysis tools. The
biggest gap on a way to improved analysis instruments currently exists in human-
machine interface. Huge amounts of data tend to confuse a scientist and make
the research more complicated. Scientist should be put back in control of his data

33

34 Chapter 4. Scientific Data Processing

and be able to use his intuition to conduct successful experiments.

Modern scientific algorithms become more sophisticated and most of them are
super-linear, which means N2 or N3 time is needed to process N data points.
Low I/O bandwidth in comparison to storage capacity make the picture even
worser. All of these facts result in a longer analysis time and state a clear demand
for improved scientific data processing tools.

Jim Gray et al. in [GLNS+05] define a notion of a smart notebook, which stands
for an easy and intuitive data management. The general idea behind this smart
notebook is that huge computing centres take over storage of all scientific datasets
and applications providing a scientist with a personal workspace. In this case a
scientist will only communicate his data requests and receive computation results
to and from the data centre. The data centres will be self-healing and serve for
data loss protection and reduced configuration access.

Metadata is the data about raw data. One of its most important characteristics
is that it stores information about the data lineage, the way it was computed,
obtained and measured. Contemporary multimedia formats such as MP3, JPEG
and PDF already offer this feature. The metadata is crucial for many aspects of
smart notebook’s development scenario. It contributes for better understanding
of scientific data by people and analysis tools. It enables implementation of sim-
ple and convenient data models for organising and representing data arrays and
relationships among them. Many popular scientific formats like HDF, NetCDF
and FITS making use of metadata. The self-describing property of the data is crit-
ical for data independence. Independence means separating applications from
the raw data. Similar to modern database systems a physical and logical data in-
dependence could be achieved by means of metadata. Data independence makes
it possible to change underlying physical or logical data organisation without the
need to change the processing applications.

Another trend which will ease the transition to the smart notebook world is the
development and convergence of intra-disciplinary ontologies into a single global
ontology. This gross ontology will simplify the design of data analysis tools.

Whereas current scientific data formats offer good means for storage and organi-
sation of tabular numerical data, their searching and analysing abilities are rather
limited. Usually a filter-then-analyse data processing approach is followed when
using HDF, NetCDF and FITS, i.e. an application tends to process one file at a

4.1. Current Situation 35

time to find the data needed and pass it to the programming language for further
modifications. Moreover, this method is frequently used with only a single CPU
available for data processing.

The Message Passing Interface (MPI) might be a good alternative in this case.
But it is only beneficial for highly regular tasks, and offers neither metadata nor
indexing. Although, many scientific formats started to deploy MPI capabilities
and improve their processing performance, there is still a clear demand for (i)
intelligent indices and search subsetting, (ii) parallel processing and access to
data and (iii) powerful analysis tools.

In the coming decade the field of data processing will concentrate its efforts on
bringing together the main components of efficient data manipulation – file sys-
tems, database systems and programming languages. Historically scientific data
has been organised in files. So the development of advanced file systems aimed
for high performance data processing will be a part of the future research. On
the other hand modern database systems already offer many features needed in
scientific community. They have indexing, replication and distributed access ca-
pabilities. Current database systems driven by commercial organisations have
standardised around the relational SQL model. Which is not always suitable for
scientific applications.

Programming languages and especially object-oriented approach have always
played an important role in research. Nowadays there is an impedance mismatch
phenomenon, which stands for a mismatch between a relational model used by
modern database systems and an object-oriented model operated by program-
ming languages. The future of efficient data processing lies in the evolution and
integration of file systems, database systems and programming languages. There
are prototypes of object-oriented database systems and databases allowing stor-
age of embedded of linked records. The scientific data files could be plugged
into the database by means of a linked record mechanism. Moreover its awaited
that the well-known scientific formats will be integrated into popular database
systems as pre-defined datatypes.

The confluence of these major components will bring many benefits to the scien-
tific community and result in better analysis tools. Among others this symbio-
sis will enable automatic data parallelism, indexing, non-procedural access and
search capabilities, data independence, federation and flexible structuring, repli-
cation, backups, automated design and management.

36 Chapter 4. Scientific Data Processing

Some attempts have been made to conduct scientific data analysis with help of
database systems. Due to better indexing and parallelism it proved to be sim-
pler and faster than the file-oriented approach. A survey described in [GLNS+05]
highlights the main reasons of little acceptance of relational databases in research.
First of all, the standard relational model does not support multi-dimensional
data, coordinate systems and relationships among elements in data arrays well
enough. Resource-expensive learning of new applications, absence of good plot-
ting and visualisation tools, lack of support for specific datatypes and access pat-
terns, low speed, need for an expensive database administrator and no ability
to manipulate data with the standard applications after it was loaded into the
database were named among major drawbacks of relational database systems.

Although, the popular scientific data formats still lack non-procedural query
analysis, automatic parallelism and sophisticated indexing capabilities, the NetCDF,
HDF, FITS and Google Map-Reduce are a first step towards the future data pro-
cessing. These formats might be considered simple database systems because
they provide schema language to define metadata, basic indexing strategies and
elementary data manipulation language. They have given birth to parallel, non-
procedural programming and allowed portability. These formats also provide a
set of tools to create, access, search and visualise the data.

4.2 Data Formats

4.2.1 Network Common Data Form (NetCDF)

Network Common Data Form (NetCDF) is a data abstraction and a software
library intended for working with multidimensional data. The data format is
based on eXternal Data Representation (XDR) by Sun Microsystems and there-
fore provides machine-independency for storage of scientific data. In contrary
to architecture-specific binary files, data kept in NetCDF files is self-describing,
which broadens its inter-application usage potential. From the beginning the for-
mat was developed for an efficient access to small portions of data. Supporting
the named multidimensional variabes, coordinate systems and named auxiliary
properties the NetCDF data abstraction offers a high level of flexibility for scien-

4.2. Data Formats 37

tific dataset definition. A single hyperslab1 access call is used by NetCDF instead
of multiple single read and write operations. A hyperslab is identified by specify-
ing a variable name, corner and edge vectors. NetCDF also implements a feature
called an unlimited dimension, which is a special index that might be used for the
record-oriented data access.

A NetCDF file consists of three basic components: dimensions, variables and at-
tributes.

Dimension is a structure defining the shape of a dataset. This might be a real
physical dimension, coordinate system or another abstraction.

Variable is an array of elements of the same datatype. It is a major construct for
storing raw data. A NetCDF variable is specified by a list of dimensions
and list of attributes.

Attribute provides additional information about variables and files.

A file is extendible, which makes adding new components to an existing dataset
possible.

NetCDF stores all data in linear fashion. Internally the data is represented as a
one dimensional array of variable size. This abstraction allows NetCDF to min-
imise the I/O overhead and reach good data processing performance. To op-
timise the data manipulation further the PnetCDF was developed, which is a
parallel version of NetCDF.

There also exist ncdump and ncgen utilities capable of transforming NetCDF
binary data into a readable text form and backwards. These utilities could be
called within a C or Fortran code to create a NetCDF representation of a given
text file.

Performance tests run by Rew and Davis [RD90] have shown that the CPU time
for XDR conversion during the data manipulation is negligible in comparison to
the disk access time. Main areas of this format’s application are data archiving,
dissemination and representation among distributed programs.

1Hyperslab – is a subset of a complete dataset. Hyperslab is a selection of contiguous points
in the dataspace or blocks of points yielding to a regular pattern.

38 Chapter 4. Scientific Data Processing

4.2.2 Hierarchical Data Format 5 (HDF5)

Hierarchical Data Format 5 (HDF5) is a relatively new file format and software
library implemented in 2002. It was specially developed to address the properties
of scientific data and make the operation on this data maximum efficient. HDF5
serves for scientific data storage, access, management, exchange and archiving. It
is built upon a very flexible data model, provides system-independent file format
and library, supports large and complex datasets and data processing in mas-
sively parallel environments [Fol02].

HDF5 does not set any limit on the data file size and the number of objects stored
in a single file. There are many programming interfaces developed to enable
HDF5 functionality on wide variety of computing platforms. These include C,
C++, Java and Fortran 90 interfaces. The format has a versatile data model mak-
ing it possible to express other formats in terms of HDF5.

Conceptually an HDF5 data file is a container. The file format operates with pri-
mary and secondary types of objects, the first consisting of groups and datasets,
and the second holding datatypes and dataspaces [Gro07].

Group is a directory-like structure organising datasets and other groups.

Dataset is a multidimensional array of elements of any datatype.

Datatype defines the nature and character of data in the dataset.

Dataspace is an auxiliary entity keeping information on the shape and intended
usage of data.

The HDF5 groups and datasets could be compared to Unix directories and files.
There is a root group in each HDF5 file by default. Both dataset and group ob-
jects can have metadata, which consists of attributes of the form “name=value”.
There also exist links between objects, which enable object sharing. Figure 4.1
represents a general concept of an HDF5 file.

HDF5 offers wide means for describing the data with common and user-defined
metadata. The Virtual File Layer (VFL) abstraction enables efficient I/O opera-
tions, including standard, parallel and network I/O. HDF5 parallel data process-
ing mechanism relies on MPI I/O, specified by the MPI-2 standard. The HDF5

4.2. Data Formats 39

Figure 4.1: HDF5 Object Hierarchy

I/O library is dual-layered and might be used differently. On the high-level of
abstraction it offers object-specific and on the low-level media-specific APIs. It
also supports diverse storage media. HDF5 split driver allows to store the data
in two physical files – one for meta- and the other for raw data.

Many strategies exist for optimising efficient storage and manipulation of data.
The data could be compressed and chunked, and data structures extended and
updated. HDF5 compresses data in GNU zlib by default, but it could be replaced
by any other compression algorithm. Chunking strategy proves to be very effi-
cient, especially in cases when partial data access is needed. Figure 4.2 depicts
some commonly used data storage options [Gro02].

Figure 4.2: HDF5 Special Storage Options

40 Chapter 4. Scientific Data Processing

The data can also undergo comprehensive transformations during the I/O pro-
cess. These include datatype and location change, subsetting and optional sepa-
ration of metadata from the raw data. The transformation operations could be
performed either on a dataset or a datatype. In the first case a group of ele-
ments in a dataset is selected and modified. And in the second the datatype is
changed. HDF5 supports a wide range of datatypes and also allows user-defined
datatypes of any complexity and depth. HDF5 datatype is a set of properties
stored within a data file. Figure 4.3 gives an insight into data spatial subsetting
operations [Gro02].

Figure 4.3: HDF5 Spatial Subsetting Operations

Although, HDF5 is a relatively new data format, it was warmly accepted in the
scientific community and is widely used in various research fields. It is most
suitable for the projects involving operation on large data quantities of diverse
datatypes. This format makes a solid basis of the SAF, LibSheaf and CDMlib
projects by the U.S. Department of Energy; SILO project at the Lawrence Liv-
ermore National Laboratory (LLNL); NASA EOS programme for studying the
Earth’s ozone, climate and air quality. It is used by the Swedish Meteorological
and Hydrological Institute (SMHI), which has developed an HL-HDF5, a high-
level interface for HDF5. And also at the Argonne National Laboratory for their
Globus Project involving operations with computational grids.

4.2.3 Alternatives

The HDF5 main competitors are Portable Binary Data Format (PDB), Network
Common Data Form (NetCDF), Flexible Image Transport System (FITS) and HDF4.

4.3. Format Performance 41

PDB from LLNL was designed for the U.S. Department of Energy and is widely
used by physicists.

NetCDF was developed by Unidata Program Center with the intention to sup-
port the atmospheric science.

FITS started at NASA Goddard Space Flight Center as a project for processing
of astronomical datasets.

HDF4 is the previous version of HDF. Similarly with HDF5 it was designed at the
National Center for Supercomputing Applications (NCSA) at the Univer-
sity of Illinois at Urbana-Champaign (UIUC). Initially the format has been
used to ease the centre’s internal data exchange. And at later stages it was
adopted by NASA for their Earth Observing System (EOS) programme.

Some of HDF5 properties are similar to those offered by alternative formats, but
there are many spheres where HDF5 is more flexible and beneficial in compar-
ison to its rivals. Table 4.1 summarises the main features of five data formats
widely used in the scientific research. It is a reduced version of the format com-
petitive matrix adopted from [Gro02]. It highlights the format features especially
interesting for the current project.

4.3 Format Performance

The scientific format comparison would be incomplete without performance bench-
marks. The experimental test results presented in [Gro02] complement the gen-
eral picture. Figures 4.4(a) and 4.4(b) demonstrate performance of the sequential
reading and writing operations with various buffer sizes. Each measurement in-
cludes timing of the following operations: opening the file and dataset, reading
or writing the dataset, and closing the dataset and file.

Recall, that an HDF5 can use a split driver to store meta- and raw data indepen-
dently. This approach allows a parallel computation based on HDF5 reaching
almost the same level of performance as of native MPI I/O. Figure 4.5 depicts
the benchmarks of parallel writing operations. Each process there writes a 10 MB
large file.

42 Chapter 4. Scientific Data Processing

Fe
at

ur
e

H
D

F5
H

D
F4

N
et

C
D

F
PD

B
FI

T
S

O
bj

ec
t

Fe
at

ur
es

:

Fi
le

s
Pa

ra
lle

lfi
le

ac
ce

ss
Ye

s,
on

an
y

sy
st

em
w

it
h

M
PI

I/
O

N
o

In
de

ve
lo

pm
en

t
Ye

s,
on

SM
P

m
ac

hi
ne

s
N

o

St
or

ag
e

m
ed

ia
fo

r
th

e
fil

e
Fi

le
sy

st
em

,
m

em
or

y,
ne

tw
or

k
an

d
an

y
ot

he
r

de
vi

ce
us

in
g

V
FL

Fi
le

sy
st

em
Fi

le
sy

st
em

Fi
le

sy
st

em
Fi

le
sy

st
em

Sc
al

ab
il

it
y

of
ob

je
ct

s
N

um
be

r
of

ob
je

ct
s

U
nl

im
it

ed
Li

m
it

ed
Li

m
it

ed
Li

m
it

ed
Li

m
it

ed
M

ax
im

um
si

ze
of

ob
je

ct
s/

fil
es

Li
m

it
ed

on
ly

by
co

m
-

pu
te

r
or

fil
e

sy
st

em
ca

-
pa

ci
ty

23
1
−

1
by

te
s

23
1
−

1
by

te
s

23
1
−

1
by

te
s

23
1
−

1
by

te
s

O
bj

ec
ts

to
ra

ge
Ex

te
rn

al
st

or
ag

e
of

ra
w

da
ta

Ye
s

Ye
s

N
on

e
N

on
e

N
on

e
A

rr
ay

s
ex

te
nd

ab
le

in
an

y
di

re
ct

io
n

Ye
s

N
o

N
o

N
o

N
o

M
et

ad
at

a
ha

nd
li

ng
ca

pa
bi

li
ti

es
A

bi
lit

y
to

st
or

e
m

et
a-

da
ta

se
pa

ra
te

ly
fr

om
ra

w
da

ta

Fl
ex

ib
le

Li
m

it
ed

N
o

N
o

N
o

Su
pp

or
t

fo
r

co
m

pl
ex

m
et

ad
at

a
st

ru
ct

ur
es

Ye
s

N
o

N
o

Ye
s

N
o

D
at

at
yp

es
Si

m
pl

e
in

te
ge

r
an

d
flo

at
in

g
po

in
td

at
at

yp
es

In
te

ge
r

an
d

flo
at

in
g

po
in

t
ty

pe
s

of
an

y
si

ze
or

pr
ec

is
io

n

In
te

ge
r:

8,
16

,3
2,

64
-b

it
si

gn
ed

an
d

un
si

gn
ed

.
Fl

oa
t:

32
,6

4-
bi

t

In
te

ge
r:

8,
16

,
32

-b
it

si
gn

ed
.F

lo
at

:3
2,

64
-b

it
In

te
ge

r:
8,

16
,3

2,
64

-b
it

si
gn

ed
.F

lo
at

:3
2,

64
-b

it
In

te
ge

r:
8,

16
,3

2,
64

-b
it

si
gn

ed
an

d
un

si
gn

ed
.

Fl
oa

t:
32

,6
4-

bi
t

C
om

po
un

d
da

ta
ty

pe
s

(r
ec

or
d

st
ru

ct
ur

es
)

A
ny

am
ou

nt
of

co
m

-
pl

ex
it

y,
in

cl
ud

in
g

ty
pe

s
ne

st
ed

to
an

y
nu

m
be

r
of

le
ve

ls

O
ne

le
ve

l,
as

pa
rt

of
th

e

ta
bl

e
st

ru
ct

ur
e

N
/A

U
se

r-
de

fin
ed

st
ru

ct
ur

es
as

in
C

la
ng

ua
ge

O
ne

le
ve

l,
as

pa
rt

of
th

e
ta

bl
e

st
ru

ct
ur

e
Fu

ll
da

ta
ty

pe
de

fin
it

io
n

st
or

ed
in

fil
e

Ye
s

N
o

N
o

Ye
s

N
o

U
se

r-
de

fin
ed

da
ta

ty
pe

s
Ye

s
N

/A
N

on
e

Ye
s

N
on

e

Li
br

ar
y

fe
at

ur
es

:

St
or

ag
e

in
ge

ne
ra

l
(n

um
be

r
of

en
tr

ie
s

in
a

gr
ou

p)

Tu
na

bl
e

B-
tr

ee
ra

-
ti

os
,

gr
ou

p-
to

-o
bj

ec
t

re
la

ti
on

sh
ip

s

N
o

N
o

N
o

N
o

Su
bs

et
ti

ng
of

ar
ra

ys
H

yp
er

sl
ab

s,
un

io
n

of
hy

pe
rs

la
bs

,
po

in
t

se
le

c-
ti

on
s.

Se
t

op
er

at
io

ns
on

hy
pe

rs
la

bs
ar

e
de

si
gn

ed
in

.

Si
m

pl
e

hy
pe

rs
la

b
su

b-
se

tt
in

g
Si

m
pl

e
hy

pe
rs

la
b

su
b-

se
tt

in
g

N
on

e
Si

m
pl

e
hy

pe
rs

la
b

su
b-

se
tt

in
g

Sp
ee

d
of

ac
ce

ss
to

ob
-

je
ct

s
Fa

st
Sl

ow
M

od
er

at
e

M
od

er
at

e
Sl

ow

D
at

a
co

m
pr

es
si

on
an

d
ot

he
r

co
nv

er
si

on
s

G
Z

IP
is

bu
ilt

in
,

ot
he

r
co

m
pr

es
si

on
m

et
ho

ds
or

co
nv

er
si

on
s

co
ul

d
be

ad
de

d.

G
Z

IP
,

JP
EG

,
A

da
pt

iv
e

H
uf

fm
an

co
m

pr
es

si
on

N
on

e
N

on
e

N
on

e

Ta
bl

e
4.

1:
Sc

ie
nt

ifi
c

D
at

a
Fo

rm
at

C
om

pa
ri

so
n

4.3. Format Performance 43

(a) Sequential Reading Benchmarks (b) Sequential Writing Benchmarks

Figure 4.4: Sequential Reading and Writing Benchmarks

Figure 4.5: Parallel Writing Benchmarks

Another series of tests conducted by Elena Pourmal in [Pou02] shows a slightly
different picture. The Figures 4.6(a) and 4.6(b) present performance measure-
ments for creating, writing and reading a contiguous dataset on Linux. A single
file of an appropriate format was created and then used to store a dataset. A
dataset in that case was a two-dimensional array of unsigned short integers. The
experiments were run for various dataset sizes from 2 up to 512 MB.

(a) Creating and Writing of Dataset (b) Reading of Contiguous Dataset

Figure 4.6: Contiguous Dataset Benchmarks

Operating upon a number of datasets is of special interest to this project because
it reflects the data storage and access patterns of the current code. Figure 4.7(a)
describes creating of multiple datasets and writing them into a file. Again, a

44 Chapter 4. Scientific Data Processing

dataset in this experiment was represented by a two-dimensional array of un-
signed short integers. A different number of equal datasets, each 1 MB large, was
written into a file. The quantity of datasets written ranged from 100 to 1000. Fi-
nally, Figure 4.7(b) provides timing results on reading the last dataset from this
file. Although, it might seem a somewhat artificial scenario, it gives a general
impression of data lookup and access time.

(a) Creating and Writing of Multiple Datasets (b) Reading of Last Dataset in File

Figure 4.7: Multiple Dataset Benchmarks

4.4 Format Choice

Another option was an in-house binary format development. This idea would
allow to build a highly customisable format aimed specifically for the FD-FDTD
data storage and processing. But this flexibility comes at cost of time for defining
the specification, design and development of the new format. The in-house im-
plementation would not be a standard, would not have parallel support in first
versions and most importantly its performance level would be unknown.

On the other hand the performance of modern scientific formats is thoroughly
tested. It is proved that the data conversion time from ASCII to XDR and any
other binary representation is minor in comparison to the disk access time (re-
fer to Section 4.2.1). Moreover the conversion time becomes negligible when
compared to the data production phase during the main FD-FDTD simulation
or post-processing.

Building the simulation upon the HDF5 format requires a certain amount of time
for reading the documentation and getting to know the library’s API. But HDF5
is a reliable and tested platform. It is one of the widely accepted and used formats

4.5. Summary 45

for scientific data manipulation. Format’s speed is comparable and often higher
than of most of its competitors. At the same time the HDF5 file access time is
slightly larger than of pure system (see Section 4.3). This format is not tied to
Fortran only, but also supports C and Java interfaces. This gives flexibility for
future developments and possibility for interconnection of different programs
using the same data. HDF5 provides full support for parallelism and a number
of command-line utilities for data viewing and transformation. Finally, there is a
large user community and a dedicated help centre at the NCSA, which can help
answering difficult questions. This format has bright prospecs for inclusion into
contemporary database systems as one of the standard datatypes. HDF5 support
is already offered by many high performance computing clusters in the world.

In general, HDF5 provides the highest degree of collaboration among all of its
competitors. System-independent file format makes HDF5 datasets highly por-
table. These files could be accessed from machines with different memory and
storage architectures. HDF5 is a perfect method for research data standardisa-
tion. Putting in place conventions on the way to organise and store data and
metadata enables high data exchange, sharing and reuse. Having comparable or
higher performance level with all of its rivals HDF5 excels in a much broader fea-
ture support. This format’s unique properties like optimised parallel processing,
unlimited file size, chunking, compressing and complex datatype support are
critical in electromagnetic computation area. These capabilities of HDF5 grant
enough freedom for finding the most effective solution for the current task and
will serve a sound basis for the future work.

4.5 Summary

The evolution of data processing area will bring a smart notebook approach for
daily data access and management. Current developments are focused on inte-
grating ideas from file and database systems as well as programming languages
into a single product. This will result in a number of benefits for end-users mainly
reducing the overhead for data processing and enabling development of better
data analysis and visualisation tools. Implementation of scientific data formats
as default datatypes in modern databases will provide scientists with classical
database features as indexing, data independence and parallel access.

46 Chapter 4. Scientific Data Processing

Currently MPI and OpenMP offer a reliable alternative for parallel operations
upon scientific data. There is a number of scientific data formats being devel-
oped concurrently. Some of them are of general and others of specific application
character. The HDF5 data format was chosen for the purposes of this project. The
format was selected because of its outstanding performance, flexibility in data
definition and manipulation, and especially the ability for parallel data opera-
tions and Fortran programming interface.

Chapter 5

Development of
Post-Processing Utilities

The route to efficient FD-FDTD data production and optimised post-processing
lays in a number of subsequent modifications to the current in-house software.
Since the ASCII format was considered inappropriate for keeping the large vol-
umes of simulation data it was decided to replace it with the HDF5. After the
design of an HDF5 output file’s structure the main program should be altered to
print out the data in a new form. While the final goal of this project is the de-
velopment of the parallel data-postprocessing utilities, the sequential versions of
both plot pointing and plane visualising algorithms are the necessary milestones
in achieving this aim.

It is a well-known fact that parallelisation of an existing sequential algorithm
could potentially hinder the development of an efficient parallel implementa-
tion. Therefore if possible it is recommended to design a parallel algorithm ver-
sion from a scratch. That’s why the sequential variants of the FD-FDTD post-
processing methods are designed as a parallel implementation run on a single
processor. Moreover, a thorough analysis of possible parallelisation approaches
for the data plotting and animating utilities is made prior to any algorithm devel-
opment.

Chapter 5 is one of the key parts of this thesis. This chapter deals with the im-
plementation issues of this research work. The description of the simulation out-
put file in terms of HDF5 begins in the Section 5.1. Section 5.2 contains the ex-
planation of how the existent in-house software has been changed to accommo-

47

48 Chapter 5. Development of Post-Processing Utilities

date the new output capability. The extensive analysis of possible parallelisation
approaches for the data post-processing is presented in Section 5.3. The novel
plot production and plane visualisation algorithms are described in Sections 5.4
and 5.5, which conclude the chapter.

5.1 Output File Structure in HDF5

Recall the general structure of the simulation’s output data (see Section 3.2). The
FD-FDTD program prints out the information in a group of files, whereas each file
contains the electromagnetic values for the entire grid space, i.e. a file is a spatial
representation of the electromagnetic signal. The FD-FDTD numerical calcula-
tion consists of a certain number of time steps. An output file is produced for
each simulation time step. Then a collection of the simulation files will refer to a
temporal signal representation. If the information kept in a single file describes a
cubic grid space, the file itself could be compared with a snapshot of this cube for a
particular time moment. The cube’s form stays constant, but the electromagnetic
wave moves within this cube. This wave propagation is reflected by a series of
time snapshots depicting the signal status.

There is a column-wise organisation of data stored in a file (refer to Table 3.1).
An output file could contain up to 12 data columns, where the first three are
obligatory – they keep the x, y, z cartesian coordinates of a spatial position. The
following 9 columns are optional – they are intended for storing the required
displacement ~Dx,y,z and the electromagnetic field ~Ex,y,z and ~Hx,y,z values.

To design a new output file structure in HDF5, it is necessary to remember the
four building blocks of the scientific format: group, dataset, datatype and data-
space (see Section 4.2.2 for more details). Since the spatial form of the simulation
grid is defined by the cartesian coordinates, in three dimensions the FD-FDTD
space could be viewed as a large cube, whereas at each grid point there is a data
record keeping the simulated electromagnetic values.

In terms of HDF5 this structure could be defined as one global dataset storing
the complete volume of information. This dataset will be described by a three-
dimensional dataspace. A dataspace is comparable to a coordinate system. Since
a number of electromagnetic field parameters should be stored for a single datas-
pace location, the datatype of an FD-FDTD dataset will be set to an array. Array

5.2. Modification of Existing Software 49

is not included into a set of default HDF5 datatypes. That’s why it should be
created as a custom user-defined datatype before the intended file use.

The library features as data chunking, shuffling and compression are applied to
each HDF5 file created. Apart from allowing the efficient access to different por-
tions of file data, chunking also enables the use of compression option. Dividing
the dataset into chunks is vital for the independent parallel operations on the file
data. All h5-files are compressed by means of the standard GNU zlib algorithm
with the compression level set to 6. There exist 10 different levels of data encod-
ing, where 0 defines no compression at all and 9 – the best possible archiving. The
moderate compression level selected allows the relatively efficient data storage
and at the same time it does not require large time for file encoding [CYCA03].

To provide an even better compression the HDF5 data is shuffled1 before the zlib
archiving. Since the locality of scientific data is relatively high, usage of shuf-
fling algorithm will contribute to the higher compression ratio. However, the
additional byte permutations for shuffling and re-shuffling of data during the
compression and decompression operations might require more processing time.

The performance evaluation report conducted by the HDF5 Group [Gro04] states
that on average 10% of compression ratio improvement is gained while using
shuffling with gzip or bzip2 compression packages for the 32-bit float data and
5% for the 64-bit float data. This work also shows that less encoding and decoding
time is required when applying shuffling and the bzip2 compression engine. It
is also proved in the report that shuffling and bzip2 data compression needs less
processing time than the sole bzip2 encoding of data.

5.2 Modification of Existing Software

Pseudocode in the Algorithm 5.1 highlights the major steps of the HDF5 output
file production.

Variables used in the pseudocode notation are: i – specifying the HDF5 Fortran
programming language interface, fh5, g, s – denoting a new HDF5 file, the group

1Shuffling – is an approach for changing the byte order in a data stream, e.g. if the data consists
of a set of numbers, when shuffled the first byte of each number will be stored in the first data
chunk, second – in the second, etc. Shuffling is similar to the data interleaving widely used in
computer networking.

50 Chapter 5. Development of Post-Processing Utilities

1: initialise HDF5 Fortran interface i
2: create new file fh5, group g, 3D dataspace s
3: create file array datatype tfile, memory array datatype tmemory

4: modify dataset creation property list l to use filters rchunk, rshuffle, rzlib

5: create dataset d ∈ g ∈ fh5 ← s, tfile, l
6: create output and input data buffers wdata, rdata
7: fill in wdata← ~Dx,y,z, ~Ex,y,z, ~Hx,y,z

8: write wdata→ fh5 using tmemory

9: read fh5 → rdata using tmemory

10: close l, s, d, g, fh5, i

Algorithm 5.1: HDF5 Output File Production

created in this file and a three-dimensional dataspace. Parameters tfile and tmemory

stand for custom user-defined array datatypes for file and memory access respec-
tively. Variable l sets a dataset creation property list. Various data chunking,
shuffling and compressing filters applied to the creation property list are denoted
with parameters rchunk, rshuffle and rzlib. Letter d specifies the main dataset in the
file fh5, where the output data will be stored. Finally, variables wdata, rdata con-
tain the output and input data buffers, and the standard ~Dx,y,z, ~Ex,y,z and ~Hx,y,z

notation is used to specify the displacement and electromagnetic field values pro-
duced during the FD-FDTD simulation.

An HDF5 output file for the in-house software is created in the following way.
First the Fortran interface is initialised to provide access to the HDF5 library sub-
routines. Then the new binary file in HDF5 fh5 is created. The group g takes up
the second layer in the file group hierarchy after the default root group “/”. This
is done to allow more flexibility in manipulation of datasets in a single file. The
three-dimensional dataspace s is created using the x, y and z output coordinate
ranges of the simulation. Next two custom datatypes for the program data are
created. These are the file and memory array datatypes tfile and tmemory. HDF5
intentionally distinguishes between these two datatypes. The special file datatype
provides a platform-independent binary file representation. The latter memory
datatype is different for each system, but it enables faster memory operations on
data. Finally, the alteration of the default dataset creation property list l for the
support of library chunking, shuffling and zlib compression options is done by
adding the appropriate filters rchunk, rshuffle, rzlib to the list l.

All the above procedures comprise the preparatory phase of the HDF5 library
usage. Now the main entity of an HDF5 file – the dataset d is created. This is a
target storage place for the actual simulation data. The dataspace s, file datatype

5.3. Possible Parallelisation Approaches 51

tfile as well as the modified dataset creation property list l should be specified for
a successfull creation of a dataset d. This dataset is located in the group g in a
file fh5. Then the data buffers wdata, rdata are initialised. These are applied for
a more efficient single access data I/O operations in the HDF5 file. In this case
writing and reading of a dataset occurs in a one step manner, when the data is
processed as a single chunk. After numerical part of the simulation is finished the
~Dx,y,z, ~Ex,y,z and ~Hx,y,z values for the requested output grid space are stored into
the wdata variable. Then the contents of the intermediate output buffer wdata
are written into a particular file fh5. The memory array datatype tmemory should
be used during the data transfer. Reading of the filled in HDF5 file is optional.
It is currently performed to validate the correct result of data writing operation.
Access to all HDF5 variables should be terminated at the end of data output. This
allows to release resources.

The existing in-house FD-FDTD software was modified to support the HDF5 file
output. The HDF5 simulation data is written as described in the Algorithm 3.1.
The original program capability to produce output in the ASCII format was left
intact. This was done mainly for experimental and performance testing purposes.
The ASCII data output will become optional or will be completely removed in the
future revisions of the program.

Each major step of the HDF5 output file production is supplied with a proper
status-message. This contributes for easier identification of errors and is espe-
cially useful during the code debugging.

5.3 Possible Parallelisation Approaches

The key to efficient implementation of data post-processing tasks consists in the
idea of parallel execution. Therefore to enable simultaneous processing the FD-
FDTD data should be distributed among available CPUs. For the resulting pro-
gram efficiency it is vital that the workload division occurs in the right manner.
The data chunks assigned to particular processors should be made independent
of each other. This is required to avoid processing bottlenecks, where one CPU
would have to wait for the result of another. This section provides an extensive
analysis of possible workload distribution and parallelisation approaches. Un-
derstanding the data dependency character and the potential for multiprocessing

52 Chapter 5. Development of Post-Processing Utilities

is crucial for the success of new plotting and visualising algorithms.

In general, there exist three workload distribution dimensions for the FD-FDTD
data. The information could be separated among the participating processors
according to (i) one of the grid space coordinate axis x, y, z, (ii) time step value
t, and (iii) displacement ~Dx,y,z or electromagnetic field ~Ex,y,z, ~Hx,y,z value. Con-
sidering the task of plot production, two cases of data post-processing might be
distinguished. These are either plotting the entire domain or the subdomain of the
simulation data. The following sections analyse both of the plot production cases.

5.3.1 Case I – Plotting Entire Data Domain

Plotting the entire data domain refers to producing plots of all displacement and
electromagnetic field values for the entire grid space. In this case the most suit-
able workload distribution approach would be according to one of the coordinate
axes. For example, if the data is divided among the z axis, where z ∈ [1, 100], time
step t ∈ [1, 100] and processor rank r ∈ [1, 4], then each processor is assigned 25 z-
points. But the data post-processing in this way requires parallel file access. Since
one output file represents the electromagnetic state of the entire grid space for a
particular time moment, coordinates from all four z-ranges must be read from the
same file. This is because each processor starts the preparation of the plot.data
file from the very beginning of the simulation. This means all 4 CPUs will first
need to access data files with time step t = 1, then t = 2, etc. Since the FD-FDTD
data is stored in HDF5, this issue could be solved using the library subroutines
for parallel file access.

Distributing the workload according to the time step value t will result in 4 pro-
cessors responsible for the complete grid space each, where a specific CPU will
obtain 25 successive time steps t. No parallel access to a single output file will be
required in this case. But this work division will produce 4 separate plot.data
files for each grid space point. This will happen because every processor will
be capable of creating the plotting file only for its own time step range, i.e. r1

will generate the plot.data files for all grid space coordinates in the time range
t ∈ [1, 25], r2 – t ∈ [26, 50], r3 – t ∈ [51, 75] and r4 – t ∈ [76, 100]. Afterwards all
4 plotting files should be combined to obtain the final graph of the signal in the
complete time domain t ∈ [1, 100].

5.3. Possible Parallelisation Approaches 53

Spreading the post-processing load according to one of the displacement or elec-
tromagnetic field values makes little sense while it provides no uniformity. It will
be complicated to distribute the variable number of ~D, ~E or ~H values among the
available processors evenly.

5.3.2 Case II – Plotting Data Subdomain

While plotting the entire data domain is a relatively rare task, it serves a good ex-
ample for describing possible parallelisation strategies. On the contrary it is fre-
quently needed to plot a single grid space point or a collection of specific points.
By depicting the signal at certain key locations only can justify the correctness of
the complete FD-FDTD simulation. Under assumption that it is required to plot
the data subdomain, the most appropriate workload division will be according
to the time step value t. This is true, while the detailed analysis of the other two
parallelisation approaches reveals their unsuitability.

Distributing the target data among one of the grid space coordinates is compli-
cated, while the number of points for plotting is hardly adjustable to the number
of available processors, e.g. there might be only 2 grid space points required
for plotting and 64 processors. The last possible workload division strategy is ac-
cording to the electromagnetic field value. Again everything said for the previous
case of coordinate axis distribution is true here. Assigning the variable number
of ~D, ~E and ~H output file columns to an unknown number of the post-processing
CPUs is difficult. Reaching the evenness of processor load so important for an
effective parallelisation is very hard using the coordinate axis or electromagnetic
field values.

Review of the time step data distribution proves its flexibility. In this case all the
points intended for plotting are assigned to every available processor. Since the
data is spread according to the time step value t, no parallel access to a single
output file will be required. The highest level of data independency is reached,
while each CPU will operate on its own subset of output files. Using the time step
dimension for data distribution makes each processor responsible for producing
the plotting files in its own time step range. Although, this will result in a number
of plot.data files for each target point of the grid space. A collection of plotting
files for the same space point could be easily concatenated using the standard
Unix utility cat.

54 Chapter 5. Development of Post-Processing Utilities

5.4 New Plot Production

5.4.1 Design

The pseudocode in the Algorithm 5.2 explains the main phases of the new plot
production implementation. Since plotting a single point or a small subset of grid
space points is considered to be more practical, the algorithm was developed to
distribute the workload according to the time step value t (see Section 5.3.2 for
more details). The major improvements of this design over the initial algorithm
are (i) the support of FD-FDTD output files in HDF5, (ii) capability to plot any
amount of grid space points and (iii) the potential for efficient parallel processing
of the simulation data.

1: read simulation parameters Tg, nCPUs, Gco, divaxis ← params
2: read coordinates of points to plot C ← points
3: determine processor rank r for each point p ∈ C
4: store all distinctive CPU ranks r → R
5: generate dat-file names→ D
6: create and open D
7: initialise HDF5 Fortran interface i
8: for each processor c responsible for points in C do
9: for each time step t in assigned time range Tl do

10: generate h5-file name n
11: open h5-file Hn, group g, dataspace s, datatype tmemory, dataset d
12: read complete dataset d→ input buffer rdata using tmemory

13: for each point p ∈ C do
14: if (p was processed by c) then
15: write t, pe → corresponding dat-file Dp

16: end if
17: end for
18: close d, tmemory, s, g,Hn

19: end for
20: end for
21: close D, i

Algorithm 5.2: New Plot Production

The variables used throughout the pseudocode are Tg, Tl for identification of
global and local time step ranges. In this case global means the time step range
for the entire FD-FDTD simulation and local stands for the range assigned to a
post-processing CPU by an MPI master processor. Local time step range Tl is the
main criterion for the workload distribution allowing effective parallelisation of

5.4. New Plot Production 55

plot production. Parameter nCPUs sets the number of available post-processing
CPUs. The set Gco specifies the coordinate ranges in the workload division axis
divaxis for each processor of the initial FD-FDTD simulation. Where the variable
divaxis can take the values of x, y or z. All parameters Tg, nCPUs, Gco and divaxis re-
fer to the original FD-FDTD calculation and are read from an auxiliary simulation
file params.

The set C keeps the coordinates of target grid space points intended for plotting.
These point coordinates are passed by means of another file called points. Pa-
rameters r and p denote the single processor rank and target plotted point. Vari-
able R stores a collection of all CPU ranks of the initial simulation. Parameters
D and H identify the resulting plot data files and the set of HDF5 files, where
Dp specifies a plot data file corresponding to a particular point p and Hn refers
to a single h5-file with a name n. Variables i, c and t denote the HDF5 Fortran
interface, single processor and time step values respectively. The HDF5 file pa-
rameters use the same notation as the pseudocode in the Algorithm 5.1. These are
g for the file group, d for the dataset described by the three-dimensional datas-
pace s and containing the data of type tmemory. Input buffer rdata is used to fetch
the h5-file data for the post-processing operations. Finally, parameter e stands for
a generic displacement or electromagnetic field value intended for plotting and
pe denotes an e value for a particular grid space point p.

The working manner of the novel algorithm is described in the subsequent para-
graphs. First the initial FD-FDTD simulation’s parameters are read from the
auxiliary file params. The values Tg, nCPUs, Gco, divaxis will help to distribute the
workload among the available post-processing resources. The idea behind these
variables is the automatic identification of the original simulation’s data produc-
tion style. Knowing the initial way of data processing enables the efficient and
correct load division for the post-processing activities. This is especially useful
when the number of post-processing CPUs is not equal to the amount of simu-
lating CPUs. No human interference is required during the organisation of the
post-processing activity.

The next step is reading the space grid point positions intended for plotting.
These are stored in the point coordinate set C. Afterwards the processor ranks
R are determined for each point p kept in the set C. This is particularly impor-
tant for the identification of a specific HDF5 file Hn, which will hold the electro-
magnetic field value e of a point p. Another preparatory step prior to the main

56 Chapter 5. Development of Post-Processing Utilities

functional body of the algorithm is the plotting file name D generation and file
opening. Since each processor is responsible for its own local time range Tl there
will be nCPUs plotting files for every grid space point p. The post-processing CPU
rank is reflected in the plotting file name to distinguish between different dat-files
and to be able to concatenate them in the right order.

After the HDF5 Fortran interface i is initialised the algorithm enters into the main
phase of plot file production (lines 8-20, Alg. 5.2). There are two general loops in
the code. Where the first allows to iterate through all initial processors respon-
sible for the simulation of target points. The latter passes through all time steps
t in the local time range Tl. Both of these cycles are required for the identifica-
tion of correct HDF5 simulation files because the actual grid space points with
the accompanying electromagnetic field data are stored in the specific h5-files,
dependending on various parameters of an initial FD-FDTD simulation. Where
the ongoing time step and the processor rank are crucial in identification of a
particular HDF5 file.

The specific CPU rank and the time step value allow to construct the target HDF5
file name n. Then the file Hn and group g are opened. The dataset d is accessed
after its dataspace s and the memory datatype tmemory are read from the group.
Finally, the entire information domain contained in the dataset d is sent to the in-
put buffer rdata. Then the current time step t and the electromagnetic field values
e of each point p intended for plotting are forwarded to the corresponding plot
data file Dp. Afterwards, when all the effective electromagnetic information has
been extracted from the array rdata, the HDF5 dataset d, memory array datatype
tmemory, dataspace s, group g and the file Hn are closed to release computing re-
sources for the next h5-file. The ready plot files D and the HDF5 Fortran interface
i are closed in the end of post-processing.

5.4.2 Implementation

The new plot pointing functionality described by the Algorithm 5.2 is imple-
mented in Fortran 90 using the HDF5 library version 1.6.5. The program is called
plotPoints.F90. A wrapper script h5compile.sh should be applied to the
source code for the compilation. This is a custom bash script developed for con-
venient usage of HDF5, GNU zlib library and MPI Fortran compilers. The exe-
cutable file requests no command-line arguments. All information required for

5.4. New Plot Production 57

successful plot file production is stored in the text files params and points,
whereas the first keeps the information from the initial FD-FDTD simulation and
the latter specifies the total number of points to plot as well as their coordinates.

Table 5.1 depicts the contents of the simulation parameter file params. Values
kept in the upper part of the table are especially important for the future post-
processing. All other variables describe the physical settings used during the
FD-FDTD calculation. The pseudocode notation of the Algorithm 5.2 is given
in the left column for the easier recognition of parameter meaning. Table 5.1
gives an example for the FD-FDTD simulation performed for the time step range
Tg ∈ [1, 10], where two processors nCPUs = 2 were used to produce the output
data. The ranks of these processors as well as the coordinate ranges they were
responsible for are stored below: c1 = 0, lr1 ∈ [1, 5]; c2 = 1, lr2 ∈ [6, 10]. The next
row specifies the workload division axis divaxis = 3, which refers to z axis in this
case. Then follow the simulation-wide output coordinate ranges: rx ∈ [1, 10], ry ∈
[1, 10] and rz ∈ [1, 10]. In other words, there were two CPUs conducting the FD-
FDTD calculation for the 10× 10× 10 grid space for 10 time steps. The z axis was
used for the data distribution, whereas each of the processors performed one half
of the entire simulation: lr1 ∈ [1, 5], lr2 ∈ [6, 10].

Table 5.2 reflects the contents of the point coordinate file points. This file speci-
fies the grid space coordinates of points intended for plotting. First table row sets
the total number of plotted points. The rows below define the x, y, z coordinates
of each point. In the example shown in Table 5.2 there are 3 points aimed for
plotting: p1 = (1, 4, 3), p2 = (7, 2, 9) and p3 = (5, 5, 5).

The simulation data files in HDF5 should be accessable from the same directory
where the program is started. Launching the new plotting program plotPoints

will produce one data file per point per processor, i.e. for the example case re-
viewed in Tables 5.1 and 5.2 there will be 3 points× 2 processors = 6 plotting data
files after the code execution. Also the data file naming convention was changed
to better reflect the file contents. Previously, the plotPoint.sh script was capa-
ble of producing only one plotting file plot.data. This was inappropriate for
the case of plotting many grid space points. The new file name is constructed
according to the following template: <x>-<y>-<z>_<rank>.dat, where the
<x>, <y>, <z> stand for the x, y, z point coordinate values and <rank> states
the current rank of the post-processing CPU. This naming scheme allows for easy
distinguishing of produced files. Table 5.3 shows the file names for 6 plotting files

58 Chapter 5. Development of Post-Processing Utilities

produced in the example described in Tables 5.1 and 5.2.

Notation Description Values

Tg time step range 1 10
nCPUs number of processors 2
c1, lr1 rank, range 0 1 5
c2, lr2 rank, range 1 6 10
divaxis division axis 3
rx x range 1 10
ry y range 1 10
rz z range 1 10

soft source case
media parameters read from param00000.bin

σ sigma 0.2
ε00 epsilon00 2.8
εs epsilons 4.8
τ tau 0.7× 10−11

elements per wavelength 300
bytes per memory element 7488
wave frequency 0.3× 1010

grid size 10 10 10
source location 5 5 5
width 2.5
freqmodu 6.0
isourcecase 2
impulse location 5 5 5
time 0 0.4× 10−02

Table 5.1: Structure of Simulation Parameter File params

Some parallels might be drawn between the pseudocode parameters in the Al-
gorithm 5.2 and the variables implementing them in the program. The set Gco

storing the coordinate ranges along the division axis of the original FD-FDTD
simulation is realised by means of a two-dimensional array variable ranges(),
where the dimension sizes are nCPUs × 3. This results in a three-column data
structure, while the first column keeps the processor’s rank c and the remaining
two store the starting and ending coordinate range values. The pseudocode pa-
rameter C reflecting the plotted point coordinate values refers to another two-
dimensional array co() of size npoints × (drank + 1). Here the drank specifies
the dataset’s rank in the HDF5 output file, which is 3 for a three-dimensional
dataset. One record in the data structure co() will store the initial processor’s
rank c responsible for the current point production and the point location in

5.4. New Plot Production 59

3

1 4 3
7 2 9
5 5 5

Table 5.2: Structure of Point Coordinate File points

1-4-3 00000.dat
1-4-3 00001.dat

7-2-9 00000.dat
7-2-9 00001.dat

5-5-5 00000.dat
5-5-5 00001.dat

Table 5.3: Plot File Names

x, y, z grid space coordinates. The variable R, which keeps the distinctive ranks
of processors participated in the original simulation, is implemented with help
of a one-dimensional array ranks() of length npoints. Due to the inability to
create variable size arrays in Fortran 90, this data structure contains npoints en-
tries [Smi95]. Each record in ranks() stores either the CPU rank or value “-1”,
indicating the empty field. The set of the resulting plot files is denoted by pa-
rameter D (Alg. 5.2), which is realised with another compound data structure of
length npoints called plot_file(). The program variables ranges(), co() and
ranks() are of type integer, while plot_file() contains character data entries
of length 64. These code variables are very important for the automatic mapping
of original simulation workload distribution to the number of processors avail-
able for the plot production.

Also a number of additional subroutines were developed to lighten the plot file
creation and manipulation tasks. The methods get_valency(), to_str() and
to_zstr() were implemented for the convenient file name generation, where
get_valency() returns the quantity of digits in a number, but to_str() and
to_zstr() convert integer values into character string or a zero-lead string. A
mathematical function was designed for the get_valency() procedure:

f(x) = blg(x)c+ 1,

60 Chapter 5. Development of Post-Processing Utilities

where f(x) denotes the quantity of digits in a number x. Finally, the subroutine
exists() verifies whether a given element exists in a set.

5.4.3 Drawbacks

One of the potential drawbacks of the current point plotting implementation is
that the entire dataset is read from the HDF5 file into the input buffer rdata. This
could reduce the program performance, especially in the most frequent execu-
tion cases, when only a small amount of space points have to be plotted. The
overhead of reading the complete dataset compared to reading only the certain
points could be relatively large. Although, the HDF5 library offers wide means
for partial data selection such as separate points and hyperslabs, implementing
directed reading of specific points was complicated and error-prone. This hap-
pened partly because the HDF5 library and APIs are written in C programming
language and the internal HDF5 data is stored in row-wise approach, which is
native to C. Since the developed plotting software was implemented in Fortran,
which arranges the data in a column-wise order, it was very difficult to read the
C-native HDF5 data specifying the Fortran-native dataspace indices [EPL94]. In
order to provide a fully-functional plotting utility it was decided to use the less
efficient, but correct way of reading the HDF5 data.

Another performance issue is the HDF5 speed of search for a dataset element. It
is unknown how the dataset is parsed for a single element. Currently there is no
indexing feature support for HDF5 datasets. Creating an index for each dataspace
dimension x, y, z would significantly reduce the element look-up time. Indexing
is one of the new improvements scheduled for the next HDF5 release 1.8.0. It is
awaited that this software version will be available to public in autumn 2007.

5.4.4 Jumping Approach

An improved element look-up algorithm was developed in terms of this project.
It was called the jumping approach. The idea of this searching technique lays in
the subsequent advancement through the dataspace dimensions. Since the spa-
tial position of a target point is known prior to the electromagnetic field data
extraction it could be used for an intelligent look-up of a required value. At first
the FD-FDTD simulation coordinate ranges should be analysed and the respec-

5.4. New Plot Production 61

tive axes should be sorted in the descending order. This enables traversing the
grid space from the largest to the smallest coordinate range. Finding the target
point’s coordinate value in the largest range will perform a “jump” to a certain
section of the HDF5 dataset. Since the other coordinate ranges are smaller it is
assumed that the target point’s electromagnetic value will be relatively close to
the current dataset location. Afterwards another “jump” should be made to find
the point’s coordinate value in the second largest axis. This will further reduce
the point look-up scope. Finally the last ”jump“ performed in the vicinity of first
two coordinate values will obtain the required field value.

Table 5.4 gives an example of the simulation output file contents. The target
point’s coordinates will be px,y,z = (117, 356, 92). In this case the global coordinate
ranges are x ∈ [1, 189]; y ∈ [1, 467]; z ∈ [90, 95]. Sorting the axes in descending or-
der according to the range size will result in the following sequence: y, x, z. Now
applying the jumping approach will help to find the point’s electromagnetic val-
ues. First, the algorithm will ”jump“ to the position 356 in the y axis, afterwards it
will look for the coordinate 117 in the x axis and finally ”jump” to the value of 92

in the z axis. This will place the HDF5 internal file pointer on to the target point’s
record 117, 356, 92. The last processign step is acquiring the electromagnetic field
values.

Because of the project time constraints this approach has not been implemented
practically.

Space Coordinates Field Values

x y z ~Ex · · · ~Hz

1 1 90 -0.15396E+10 · · · -0.15041E+12
...

...
...

...
...

117 356 92 0.11483E+9 · · · 0.64315E+11
...

...
...

...
...

189 467 95 0.13878E+08 · · · 0.13895E+10

Table 5.4: Output Data File Structure

62 Chapter 5. Development of Post-Processing Utilities

5.4.5 Parallelisation

Due to the limited time amount allocated for the project only the sequential ver-
sion of the new plotting utility was produced. However, this sequential imple-
mentation was specifically developed for future parallelisation. The program
parallelisation should be reached by even distribution of post-processing work-
load between the participating CPUs. The load division should occur according
to the global time step range Tg kept in the simulation parameters file params.
The efficient code parallelisation could be achieved in two ways: (i) by making
the MPI master processor responsible for the initial workload distribution or (ii)
keeping each available CPU independent and forcing it acquiring all the neces-
sary data on its own. In the first case the MPI master processor will read the
params and points auxiliary files and spread the load among the other CPUs
by sending them their specific local time ranges Tg as well as the target point co-
ordinates x, y, z [VAN99]. On the contrary in the second case the params and
points data files should be also stored in HDF5. This will enable parallel access
to the subsidiary files for each participating processor. Which one of these two
approaches is faster is a question of future implementation and performance ex-
periments. The first case is better from the implementation complexity point of
view.

5.5 New Visualisation Production

5.5.1 Improvement of Sequential Version

This section presents two variants on the way to improve and speed up the exis-
tent sequential script visualisePlane.csh. Both improvements are depicted
by means of pseudocode. The mathematical notation of the pseudocode is con-
sistent throughout the dissertation and most of the symbols pertain their mean-
ing used in the previous Algorithms 3.1, 3.2 and 3.3. The pseudocode in Algo-
rithm 5.3 shows the first series of optimisations. The main difference between the
proposed code and the original in the Algorithm 3.3 is contained in new opera-
tions in lines 5-7 and 8-13. Instead of 6 times using the sort utility for finding
minimum and maximum values of each coordinate axis and the electromagnetic
fields the new version applies gawk to parse the entire output file once. During

5.5. New Visualisation Production 63

this single file tracing all the required maximum and minimum values are col-
lected. However, the performance improvement of this case should be verified
by experiments. It is still possible that the sort utility implements a very effi-
cient sorting algorithm, which applied 6 times might be faster than a single file
parsing with gawk.

1: pass coordinate value va3 , processor rank r, data files F to gawk
2: for each file fr ∈ F do
3: use gawk to find plane la1,a2 specified by va3

4: output e→ file.pgm
5: for each file column c ∈ (ca1 , ca2 , ce) do
6: set vmax,c, vmin,c ← r0,c

7: end for
8: for each file row w do
9: for each file column c ∈ (ca1 , ca2 , ce) do

10: use gawk to find vmax,c, vmin,c :
11: if (vc > vmax,c) then vc → vmax,c

12: else if (vc < vmin,c) then vc → vmin,c

13: end if
14: calculate (vmax,c − vmin,c + 1)→ cgc

15: if (cgc > gc) then
16: replace gc with cgc in file.pgm
17: end if
18: end for
19: end for
20: use Fortran program to convert file.pgm→ file.ppm
21: end for
22: use ImageMagick to convert *.ppm→ movie.mpeg

Algorithm 5.3: Improved Visualisation Production, Variant A

Another option to make the initial visualisation algorithm performing faster is
shown by pseudocode in the Algorithm 5.4. This program modification could be
applied to the visualisation problem under assumption that the simulation grid
space size is constant for every time moment. This is true for the current FD-
FDTD method implementation. Lines 2-7 and 11-16 (Alg. 5.4) depict the main
changes in the visualisation code. In this case the 4 program calls to the sorting
utility could be performed only once for the entire post-processing task. Running
the sort command for a single time on the first output file fr0 will obtain the nec-
essary maximum and minimum values vmax, vmin for each grid space axis a1, a2.
Since the grid dimensions remain constant throughout the simulation, the first 4
calls to the sort utility could be excluded from the main program cycle (lines
8-17). There will be only 2 sorting calls left. These are still needed for finding the

64 Chapter 5. Development of Post-Processing Utilities

electromagnetic field value range cgce , while these values are different for each
output file. Using 2 sort calls instead of 6 for each simulation file should drasti-
cally reduce the overall post-processing time. Similarly, if the grid space sizes do
not change throughout the FD-FDTD calculation, the minimum and maximum
axis values could also be read from the params file, which keeps all the general
information about the simulation. This would further increase the visualisation
performance, saving time on another 2 calls to the Unix sorting utility at the be-
ginning of the post-processing activity.

1: pass coordinate value va3 , processor rank r, data files F to gawk
2: use file fr0 :
3: for each file column c ∈ (ca1 , ca2) do
4: use sort to find vmax,c, vmin,c

5: calculate (vmax,c − vmin,c + 1)→ gc

6: store gc → file.pgm
7: end for
8: for each file fr ∈ F do
9: use gawk to find plane la1,a2 specified by va3

10: output e→ file.pgm
11: use sort to find vmax,ce , vmin,ce

12: calculate (vmax,ce − vmin,ce + 1)→ cgce

13: if (cgce > gce) then
14: replace gce with cgce in file.pgm
15: end if
16: use Fortran program to convert file.pgm→ file.ppm
17: end for
18: use ImageMagick to convert *.ppm→ movie.mpeg

Algorithm 5.4: Improved Visualisation Production, Variant B

5.5.2 Parallelisation

The pseudocode in the Algorithm 5.5 highlights the major features of the paral-
lelised plane visualisation functionality. All the previous theoretical as well as
practical ideas are put together in the design of this new parallel algorithm. Sim-
ilarly to the plot production task the simultaneous multiprocessing is achieved
through worklad division according to the time step value. Again this way of
parallelisation was selected because it is more frequently required to visualise
only a small number of simulation planes. Usage of HDF5 attributes, which will
“stamp” each simulation data file with the maximum and minimum values in
every grid size dimension will allow to elude any data sorting and parameter

5.6. Summary 65

file access prior to the main post-processing. The coordinate extremum values
will be read just before their intended usage (line 11, Alg. 5.5). In this case only
the displacement or the electromagnetic field values ~E should be acquired from
the HDF5 dataset d. The library hyperslab selection feature will be applied to
obtain the specific portion of the effective data. While there is no indexing capa-
bility implemented in the current version of the HDF5 software, the maximum
and minimum value look-up in the input buffer rdata should be developed man-
ually (line 13). The max() and min() subroutines could be either implemented
at the HDF5 library data access level or as an ordinary Fortran 90 procedure. The
extremum value searching functionality could be improved at the later develop-
ment stages, when the HDF5 indexing feature becomes available to the general
public. It is strongly believed that maximum and minimum value look-up will
be performed faster when relying on a valid data index.

Finally, usage of Netpbm2 command-line utilities pgmtoppm and ppmtompeg

will contribute to another reduction of post-processing time. Since Netpbm is
a native specification package for PGM and PPM file formats it is awaited that
its tools provide the most efficient media conversion commands. Netpbm data
transition utilities should replace the custom Fortran 90 program as well as the
ImageMagick generic convert command. Moreover Netpbm is one of the soft-
ware packages that comprise the standard major Unix/Linux distributions.

5.6 Summary

The current in-house software developed in Fortran was enhanced with the HDF5
subroutines to support data output in this scientific format. Each simulation out-
put file is built upon the three-dimensional dataspace using the user-defined
array datatype for storing the displacement and electromagnetic field values.
Chunking, shuffling and compression filters were applied to the dataset creation
property list for further improvement of data storage efficiency. Due to limited
time availability only the sequential version of the point plotting utility was im-
plemented. However, the sequential implementation was designed with the nec-
essary future parallelisation in mind.

2Netpbm – is a toolkit created for effective manipulation of graphical images. Comprised of
about 300 command-line-based utilities it is especially aimed for convenient image format con-
version. Current version supports over 100 different image formats.

66 Chapter 5. Development of Post-Processing Utilities

1: read simulation parameters Tg, nCPUs, Gco, divaxis ← params
2: read locations of planes to visualise L← planes
3: determine processor rank r for each plane l ∈ L
4: store all distinctive CPU ranks r → R
5: for each processor c responsible for planes in L do
6: for each time step t in assigned time range Tl do
7: generate h5-file name n
8: open h5-file Hn, group g, dataspace s, datatype tmemory, dataset d
9: use tmemory :

10: read ~E from dataset d→ rdata
11: read vmax,a1 , vmin,a1 , vmax,a2 , vmin,a2 from dataset attribute u→ attr
12: for each plane l ∈ L do
13: use max() and min() on rdata→ emax, emin

14: calculate ranges ga1 , ga2 , ge

15: write le, ga1 , ga2 , ge → corresponding pgm-file Pl

16: end for
17: close d, tmemory, s, g,Hn

18: use pgmtoppm to convert Pl → ppm-file Ql

19: end for
20: end for
21: use ppmtompeg to convert Q→ visualisation Vl

Algorithm 5.5: New Visualisation Production

Different parallelisation approaches that could be potentially employed for si-
multaneous multiprocessing were analysed. Two most suitable workload distri-
bution strategies were discovered. It was shown that dividing the load according
to the coordinate axis value is the preferred option for the case of entire data do-
main processing. On the contrary the load should be spread according to the time
step value range while plotting or visualising the data subdomain.

The novel implementation of the point plotting functionality supports the HDF5
simulation files, is capable of plotting any number of the grid space points and
comprises a strong basis for future parallelisation.

There were two major improvements proposed for the current plane visualisation
algorithm. One of them relies on the single parsing of the simulation file with
gawk programming language instead of using Unix sorting utility for 6 times.
While another proposal lays in moving 4 program calls to the sort command
out of the main loop.

5.6. Summary 67

Finally the parallel visualisation algorithm was developed. The key features of
the new plane visualisation are the application of HDF5 attributes for storing the
grid space extrema, development of new max() and min() program functions
and extensive usage of Netpbm utilities for the data format conversion and final
visualisation production.

Chapter 6

Experiments on High Performance
Computing Systems

This chapter concentrates on the large-scale computational electromagnetics which
simulates the wave propagation in the vicinity of the Vivaldi antenna array ele-
ments. First the architectures of the supercomputer Bull system at the Univer-
sity of Manchester (called Horace) and the IBM BlueGene/L at the University of
Groningen in the Netherlands are presented. After discussing the current experi-
ence with these systems and highlighting their drawbacks a thorough analysis of
the potential performance of these machines is made.

6.1 Horace

6.1.1 Architecture

Horace is a high performance computing system based in the Manchester Com-
puting facility at the University of Manchester. It consists of 192 processor cores
based on the Bull Itanium 2 architecture. The overall amount of processor cores
is spread between 24 compute nodes. Each of these nodes includes 4 Itanium 2
Montecito Dual Core 1.6 GHz processors with 8 MB of cache per processor. This
means every Horace compute node offers 8 cores for computation. There are
16 GB of RAM and 512 GB of scratch disk space available for each node. There
exist 4 special purpose nodes with high memory configuration of 32 GB of RAM.

69

70 Chapter 6. Experiments on High Performance Computing Systems

All 24 compute nodes are connected by a single rail Quadrics QsNetll (elan4)
interconnect. The whole system has a 10 TB large total filestore. Figure 6.1 repre-
sents the general architecture of a single computing node in Horace.

16GB memory

CPU

core

8MB
cache

Intel
Itanium

8MB
cache

node

Memory
bandwidth

Figure 6.1: Computing Node Architecture in Horace

6.1.2 Current Experience

Horace offers solid computing resources backed-up by a sufficient amount of op-
erating memory. Currently this system runs most of the research group’s FD-
FDTD simulations. But the scientific computation demand in the Manchester
Computing is very high. This puts serious workload on the system and con-
sequently restricts the amount of computing time available per individual user.
The job submission queues are long. Most of group’s experiments are run using
only 2 normal specification computing nodes resulting in 16 processing cores and
32 GB of operating memory. Requesting this amount of computing power results
in up to 3 days of waiting time for a single job.

6.1.3 Drawbacks

As expected with supercomputers the low-throughput is the issue. To increase
the frequency of user access to Horace resources the 24 hour job limit was put
in place. Each user is provided with 1 GB of personal disk space. Both the job
running time limit and the amount of user space on Horace are tight and bind
the FD-FDTD simulation potential. However, it is possible to use the temporal
3 TB scratch disk area or obtain access to reserve storage space under special
consideration. For the time being the group’s simulation data is copied from

6.1. Horace 71

Horace to local cluster machines. The next drawback of the Horace architecture
is a weak I/O mechanism.

6.1.4 Potential Performance

Two series of experiments were conducted on Horace to estimate the system’s
potential performance. The first series included the simulation of a single Vi-
valdi antenna element. This simulation was conducted for 5000 timesteps and
16681707 grid points, since one antenna element occupies 189 × 467 × 189 =

16681707 space grid points. All 6 electromagnetic field values ~Ex, ~Ey, ~Ez, ~Hx, ~Hy

and ~Hz for the complete grid space were output into files. These real-world ex-
periments were run on 2 computing nodes (16 processor cores) with 32 GB of
operating memory. Refer to the section called “Single Vivaldi Antenna Element”
below for further details about this series.

The second series was comprised of 6 experiments for various cubic space grid
dimension sizes: 150, 250, 350, 450, 550 and 650 points. All experiments in this
series were conducted for 100 simulation timesteps. Only ~Ez field values for the
whole grid space were output into files. The same hardware resources on Horace
were used to perform the second series of experiments – 2 computing nodes and
32 GB of RAM. Detailed analysis and discussion of this series could be found in
the section named “Scientific Probing”.

Single Vivaldi Antenna Element Running the simulation for a single Vivaldi an-
tenna element allowed to estimate the potential operating memory usage.
According to the Horace command line utility bjobs -l the amount of
RAM used for this task was 1.768 GB. This means the amount of memory re-
quired to store one space grid point for the simulation is 1.768 GB / 16681707

points = 1.06× 10−7 GB. Knowing the amount of memory required to store
a single grid point and the overall amount of RAM available to each com-
puting node allows drawing further assumptions. The potential maximum
dimension size for a cubic space grid that could be efficiently calculated on
the Horace system equals to 3

√
32 GB

1.06×10−7 GB ≈ 670 points. Another interesting
result is a prediction of the overall amount of antenna elements that could
be calculated on Horace without using the disk swap area. This equals to
6703/16681707 ≈ 18 antenna elements.

72 Chapter 6. Experiments on High Performance Computing Systems

The simulation produces one file per timestep per processor. Currently the
output is produced in ASCII form and consists of 9 field records. The fields
of a single file record are the x, y and z coordinates, and ~Hx, ~Hy, ~Hz, ~Ex, ~Ey

and ~Ez electromagnetic field values. Each file produced was approximately
200 MB large. The amount of disk space required to accommodate the total
simulation data would be 5000 timesteps× 8 processors× 200 MB = 7.6294

TB. And this is not yet the maximum amount of information that could be
stored in an output file.

It took approximately 6 minutes to output one file for a time step on each
processor. The complete calculation of 5000 timesteps would have required
5000 files× 6 minutes = 500 hours ≈ 21 days.

Scientific Probing Figure 6.2 presents the total memory requirements for the
simulation. The theoretical memory usage was estimated based on the data
obtained from the simulation of a single Vivaldi antenna mentioned ear-
lier. A series of experiments for the grid dimension sizes of 150, 250, 350,
450, 550 and 650 resulted in the experimental curve on the Figure 6.2. It
is important to notice that theoretical assumptions represent the worst-case
memory usage scenario. The experiments show that real memory demands
are less intensive and it would be possible to simulate a cube with the grid
dimension larger than 670 points and hence accommodate more than 18 an-
tenna elements. The intersection of the theoretical and experimental curves
is the value obtained from the single Vivaldi antenna simulation.

Figure 6.3 depicts the single output file size according to the grid dimension.

Refer to Figure 6.4 to observe the total processing time of a single timestep
according to grid dimension size. The processing time of a timestep is the
summation of the field calculation and output production times for a par-
ticular timestep. The processing time was measured for a single CPU.

The processing time of 35 minutes for 550 and 58 minutes for 650 grid di-
mension sizes is high in comparison to 1 and 3 minutes for 150 and 250 di-
mension sizes. This significant increase of processing time might be caused
by the weak I/O mechanism of Horace, which might not be suitable for the
I/O intensive computations. Also similar to the IBM BlueGene/L (see 6.2.3)
there might be less I/O nodes than the computing nodes in Horace. At
some point the I/O nodes might become highly overloaded. However this
problem needs further investigation. A series of experiments should be con-
ducted with and without output of electromagnetic values.

6.1. Horace 73

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700

M
em

or
y,

 G
B

Grid Dimension, points

Operating Memory Requirements

theoretical
experimental

Figure 6.2: Operating Memory Requirements

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 200 300 400 500 600 700

F
ile

 S
iz

e,
 M

B

Grid Dimension, points

Output File Size According to Grid Dimension

experimental

Figure 6.3: Output File Size According to Grid Dimension

74 Chapter 6. Experiments on High Performance Computing Systems

Figure 6.5 highlights the total time requirements for a complete simulation.
Depending on the grid dimension size and hence the single timestep pro-
cessing time the overall simulation time increases with the number of FDTD
space grid points. The theoretical curve’s values were calculated from the
experiment with a 150 dimension size. The experimental curve does not
follow the theoretical one because of the 24 hours job running time limit in
Horace. The experiments were successfully finished for 150, 250 and 350
grid dimension sizes. The 450, 550 and 650 were terminated by the Horace
scheduling system, because they required more than 24 hours of simulation
time.

00:00:00

00:05:00

00:10:00

00:15:00

00:20:00

00:25:00

00:30:00

00:35:00

00:40:00

00:45:00

00:50:00

00:55:00

01:00:00

 100 200 300 400 500 600 700

P
ro

ce
ss

in
g

T
im

e,
 m

in

Grid Dimension, points

Total Processing Time of 1 Simulation Timestep

experimental

Figure 6.4: Total Processing Time of 1 Simulation Timestep

6.2 IBM BlueGene/L

6.2.1 Architecture

IBM BlueGene/L (BGL) is a massively parallel supercomputer architecture de-
veloped by IBM in collaboration with Lawrence Livermore National Laboratory
(LLNL). The particular system intended for usage in current Frequency-Dependent
Finite Difference Time Domain (FD-FDTD) simulation is the IBM BlueGene/L im-

6.2. IBM BlueGene/L 75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700

S
im

ul
at

io
n

T
im

e,
 h

Grid Dimension, points

Simulation Time Requirements According to Grid Dimension

theoretical
experimental

Figure 6.5: Simulation Time Requirements According to Grid Dimension

plementation for the Astron/Lofar project. This machine is based on the premises
of the University of Groningen in the Netherlands. The Astron/Lofar system con-
sists of 6 racks, where each rack includes 128 I/O nodes and 1024 compute nodes.

Every compute node is comprised by the 32-bit dual core 700 MHz Power PC 440.
It has a customised Floating Point Unit (FPU) called “Double Hammer” and
512 MB of RAM. The node runs a proprietary single-threaded micro operating
system.

The I/O machines have identical hardware configuration to the compute nodes.
The only difference is that these systems are operated by the Linux OS with a
communication daemon. One I/O machine is responsible for the I/O operations
of 8 compute nodes. Aimed for high speed and large volume I/O operations
these systems are also equipped with 1 Gb ethernet connection. Figure 6.6 repre-
sents the overall IBM BlueGene/L architecture. The compute card on this scheme
is a single compute node described previously.

76 Chapter 6. Experiments on High Performance Computing Systems

Figure 6.6: IBM BlueGene/L System Overview

6.2.2 Current Experience

First of all the original FD-FDTD code has been tailored to make it work on the
Astron/Lofar machine in the Netherlands. The main simulation code is writ-
ten in Fortran and uses C and MPI subroutines. It is compiled with the Intel
Fortran complier both on the local research group’s cluster and Horace super-
computer system. The IBM BlueGene/L provides special cross-compilers for its
system. Each cross-compiler’s name is preceded with the abbreviation XL, e.g.
XL Fortran compiler. There is a number of compile scripts which wrap each com-
piler and provide it with library paths, libraries and compilation flags [GMSS07].
This makes the situation more complicated. There are mpixlf95, xlf95 and
blrts_f95 Fortran compile scripts. The Makefile of the in-house software
was changed to use the mpixlf95 which refers to parallel XL Fortran 95 com-
piler [Lan04].

The program compilation procedure on the IBM BlueGene/L system is differ-
ent. There are two types of nodes on BGL: front-end and back-end. The front-end
machines are used for code’s compilation. Each user is assigned to one of eight
front-end machines. After successful compilation the executable file should be
copied to the back-end machine and submitted into the job queue by means of
special command-line utilities. Detailed information on BGL and Horace job ma-
nipulation commands is given in Appendix C. This separation into front- and
back-end nodes is intended for keeping the back-end nodes solely for computa-

6.2. IBM BlueGene/L 77

tion tasks, avoiding possible interference in resource usage and disk access oper-
ations between users. Designed for better system use and workload distribution
this feature makes the program compilation and software installation procedures
more complicated. This is because the front- and back-end machines can have
very different hardware. The main task of the cross-compiler is to tie the code
compiled on the front-end node with the hardware resources available on the
back-end machine. The Astron/Lofar system had no HDF5 installed previously.
The cross-compiler system and restricted user access made it impossible to in-
stall the HDF5 library on the BGL. Numerous telephone and e-mail communica-
tion sessions with the BGL system administrators and HDF5 developers have not
brought positive results yet.

Previously the simulation grid space size and the number of processors were
passed to the Intel Fortran compiler by means of the -D compiler option, e.g.
-D np=4, which would set the number of processors for the simulation to 4. The
IBM compilers have other options making passing the program arguments more
difficult. This issue was solved by setting the runtime parameters directly in the
main source code. However alternative solutions exist. These parameters could
be read from an input file before the start of the simulation.

Some modifications were made to support the C subroutine calls in the the For-
tran code on BGL. First the original file extention “.F90” was changed to “.F”.
Also the subroutine names in both Fortran and C source codes were made iden-
tical and changed to comply with the following naming convention:

<subroutine_name>_

Afterwards the program was successfully compiled using the parallel XL For-
tran 95 compiler.

It is possible to launch computing jobs in two different modes on IBM Blue-
Gene/L: co-processor and virtual node mode. By default the jobs are run in the
co-processor mode. In this case the two cores of a CPU are treated as a single pro-
cessor. This results in faster MPI communication between processors and larger
amount of RAM available per CPU – 512 MB. In contrary, the virtual node mode
sees two cores of a processor as two independent CPUs. This will offer twice as
much processing power for a computing job, but also imply slower MPI com-
munication and most importantly reduce the amount of operating memory per
processor. Since the FD-FDTD electromagnetic simulations require both large

78 Chapter 6. Experiments on High Performance Computing Systems

amounts of RAM and processing power, all research group experiments were
run in the default co-processor mode.

Simple test simulations without HDF5 support were run on the BGL. Unfortu-
nately, due to the mis-configuration of the resource management system, only up
to 32 compute nodes were used. Configuration errors are currently being fixed.

6.2.3 Drawbacks

The Astron/Lofar BGL system has some known drawbacks. First of all, there are
8 times less I/O nodes than computing nodes, since one I/O node is responsible
for input and output of 8 computing nodes. Hence I/O intensive computation
can easily damage the whole system.

Secondly, each computing node has only 0.5 GB of memory. Since the current
code developed for Horace was designed to work with 2 GB of memory per node,
it is necessary to modify the program to run successfully on 512 MB of RAM on
the IBM BlueGene/L in Astron.

Despite of these problems as well as minor configuration errors of the resource
management system, the BGL offers an enormous amount of computing power.
This makes it a unique high performance system with invaluable potential for the
FD-FDTD simulations.

6.2.4 Potential Performance

Based on the experimental data obtained from Horace (see 6.1.4) it is possible to
estimate the maximum number of antenna elements and cubic grid space dimen-
sion that could be efficiently simulated on the Astron/Lofar machine. The maxi-
mum amount of processors that could be requested on the BGL for one job is 1024.
Each node on the IBM BlueGene/L has 512 MB of operating memory. Therefore,
the total amount of RAM available for simulation will be 512 GB. Now dividing
the total RAM by the RAM required for simulation of one antenna element will
give the potential maximum of antenna elements that could be calculated on the
BGL system: 512 GB / 1.768 GB ≈ 289 antennas. The maximum size of the cubic
space grid equals to 3

√
512 GB

1.06×10−7 GB ≈ 1690 points.

6.3. Summary 79

6.3 Summary

The world of high performance computing resides on the three whales: (i) avail-
able amount of CPUs and operating memory, (ii) efficiency of the I/O mechanism
and (iii) the quality of the load balancing subsystem. The overall performance
picture is complicated by the interdependencies which exist between the I/O effi-
ciency and the amount of RAM and also the I/O efficiency and the load balancing
subsystem.

Finite Difference Time Domain (FDTD) is very CPU and RAM demanding algo-
rithm. It puts high emphasis on the I/O mechanism. The solution to this is a
trade-off between the simulation’s performance, speed and precision. Some of
these components have to be compromised in order to produce reasonable simu-
lation results.

Chapter 7

Future Work

Chapter 7 discusses the project areas where a further work could be done to im-
prove the currently achieved status. Section 7.1 suggests the potential actions to
undertake for reaching these improvements. While Section 7.2 summarises the
main research stages and concludes the work.

7.1 Project Improvement

Extensive research work has been undertaken in the context of the project. How-
ever only the sequential version of the point plotting utility was practically im-
plemented. The most important goal of the future work is the fully functional pa-
rallelised variants of both point plotting and plane visualisation programs. Two
approaches exist for parallelisation of point plotting tool: (i) with an MPI master
processor distributing the workload and (ii) with independent CPUs accessing
the parameter files and identifying their part of the work. Both of these options
should be implemented and the most efficient selected for the final software ver-
sion.

A large amount of practical experience with HDF5 library and High Performance
Computing systems was gathered during the research work. The parallel post-
processing utilities could be built upon the successfully developed plotting code.
Separating the workload and running the post-processing procedures on many
processors will greatly reduce the time consumption of data-processing. More
time and effort should be invested in installing the HDF5 library on the IBM

81

82 Chapter 7. Future Work

BlueGene/L system in the Netherlands. Another series of code optimisation and
adjustment for this particular supercomputer might be required.

The novel post-processing tools should undergo a thorough testing procedure,
where the new sequential and parallel versions should be compared with the ex-
isting software. The timing results of the FD-FDTD simulation data output in
ASCII and in HDF5 should be gathered and analysed. Different compression
engines and levels should be applied to the HDF5 output to identify the most
suitable in terms of the I/O speed and the storage space requirements. One of
possible future research topics is the reduction of the I/O workload. The in-house
software could be enhanced with additional measurement subroutines tracking
the time spent for each major step of the simulation. Another innovation could
be an intelligent output approach. Similarly to the ideas proposed by Jürgen
Schnack for the approximate Lanczos diagonalisation [SHS07] the FD-FDTD pro-
gram could print out only the existing electromagnetic field values. This means
the time will be saved on all zero field values.

There are many aspects of the work that require further investigation such as the
study on whether or not the program output time depends on the file size and
format. This could be done by performing simulations with the gradual increase
of output, e.g. simulation without any output, with one field value only Ez, and
with six field values ~Hx, ~Hy, ~Hz, ~Ex, ~Ey and ~Ez.

The impact of HDF5 usage on overall storage space demand is another issue
which needs experimental support. It is obvious that application of HDF5 will be
beneficial, but the degree and character of this benefit should be tested in greater
detail.

The inefficient reading of the entire HDF5 dataset should be replaced with read-
ing of the required grid space points only. Therefore further experiments on
HDF5 library subroutines are needed. It is essential to find a correct way of ac-
quiring the C-native data using the Fortran interface.

Also some slight improvements could be made to the in-house software itself.
First of all dividing the program into Fortran subroutines and modules will in-
crease the transparency, usability and re-use of the FD-FDTD code. The amount
of the simulation input files should be reduced to the necessary minimum. Fi-
nally, the original ASCII and the new HDF5 output capabilities should be imple-
mented as Fortran subroutines.

7.2. Conclusion 83

7.2 Conclusion

This project addressed the performance issues of FD-FDTD data post-processing.
This research work had a dual goal of improving the data plotting and visualisa-
tion efficiency, and testing the potential computation and simulation performance
of two supercomputer systems: Horace and BGL. The experiments conducted on
High Performance Computing systems have shown the large potential of these
machines for the electromagnetic simulations as well as the data post-processing
activities. It was estimated that Horace could potentially calculate up to 670 point
large cubic grid space which refers to 18 Vivaldi antenna elements. The BGL is
capable of simulating the 1690 point large grid space, whereas it will accommo-
date 289 antennas. Despite of the difficulties in installing the HDF5 software on
the BGL hardware and drawbacks in the job scheduling system, this machine
provides a solid platform for the future FD-FDTD simulations.

Three phases were identified in the efficiency improvement of data post-processing
activities. These were the modification of data output and storage procedure, de-
velopment and implementation of novel sequential and parallel utilities for data
plotting and visualisation purposes. Detailed analysis of the current in-house
software revealed the slow speed and large disk space demands of the simula-
tion output in ASCII format. After a thorough comparison of available scientific
data formats it was decided to apply the HDF5 software for efficient storage and
manipulation of the simulation data. HDF5 was chosen because of its flexibil-
ity, wide spectrum of unique data handling capabilities, Fortran programming
language support and an optimised interface for parallel data access.

A detailed review of possible parallelisation approaches was conducted before
the design of novel post-processing algorithms. The workload division accord-
ing to the time step range was selected as the most appropriate for multiprocessor
plotting and visualisation activities. The sequential version of the new plotting
utility was developed in Fortran 90 using the HDF5 library APIs. The proposed
point plotting software could be efficiently parallelised by introducing the MPI
subroutines for the initial workload division. A series of performance drawbacks
were found in the current implementation of the plane visualisation algorithm.
Possible variants to improve the sequential version of the visualisation program
were made. Finally a parallel visualisation algorithm was designed, but not im-
plemented due to the time constraints of the research project.

84 Chapter 7. Future Work

It is possible to state that the novel approach of using the HDF5 data format and
exploiting parallelism of data post-processing will bring a great improvement in
speed of plot and visualisation production. This work also shares the practice
of HDF5 implementation and usage as well as identifies possible performance
ranges achievable on supercomputer systems in the domain of electromagnetic
calculation.

Appendix A
Program Files

The list below contains a full register of the FD-FDTD simulation, data processing
and complementary program files that could be found on the supplied CD-ROM.
Each file name is followed by a short description of its intended purpose.

mpi_Mur1.f – original FD-FDTD simulation program implementing parallel
calculation and ASCII output

fdtd-mpi.F90 – modified FD-FDTD simulation program implementing paral-
lel calculation and ASCII and HDF5 output

plotPoint.sh – original bash script for point plotting

plotPoints.F90 – new plotting tool capable of processing HDF5 output files

visualisePlane.csh – original C shell script for plane visualisation

bitTable.c – C program to convert the media parameters from ASCII to the
binary data format

bitVector.c – C program to convert the media parameters from ASCII to the
binary data format

bitVector.h – C header file required for successful work of bitTable.c and
bitVector.c code

toolBox.h – C header file required for successful work of bitTable.c and
bitVector.c code

Makefile – text file used by the make utility for the compilation of the FD-
FDTD code. It describes the relationships among program files and states
the commands for updating each file.

85

86 Appendix A – Program Files

h5compile.sh – bash script for the convenient compilation of Fortran pro-
grams using HDF5 library and MPI subroutines

concat.sh – shell script for concatenation of simulation output files produced
by individual machines

job.run – bash script for the convenient launch of the parallel FD-FDTD sim-
ulation program

proc2cpu – auxiliary text file mapping available computing resources to the
MPI processors used in the FD-FDTD simulation

initialdata – input file setting the FD-FDTD grid space size and spatial re-
solution

width-freqmodu – input file setting the pulse width and level of modulation

impulsenumber – input file setting the shape of a pulse

impulselocation – input file setting the location of the FD-FDTD grid space
excitation, the interior space

waveformnumber – input file setting the shape of a pulse

param00000.bin – input file setting media parameters: static and optical per-
mittivity, conductivity and relaxation time for each FDTD point

points – input file for the novel plotting utility plotPoints.F90 setting the
number and locations of plotted points

data/h5/*.h5 – collection of FD-FDTD simulation output files in HDF5 for-
mat

data/out/*.out – collection of FD-FDTD simulation output files in ASCII
format

data/dat/*.dat – collection of new point plotting tool plotPoints.F90
output files in ASCII format

data/cmd/*.cmd – collection of Gnuplot command files for plotting the
plotPoints.F90 output files

fort.25 – FD-FDTD code output file for the verification of the hard-source
excitation waveform

Appendix A – Program Files 87

fort.26 – FD-FDTD code output file for the verification of the soft-source ex-
citation waveform

params – auxiliary output file of the FD-FDTD code summarising the program-
ming and Physical simulation parameters

Appendix B
Software Installation

Appendix B explains the installation procedure of SZip 2.1 and HDF5 1.6.6 soft-
ware packages. All actions are performed for a user called “scofield”. The target
installation directory is /home/scofield/software/64/.

SZip

Download1 the tarball source code of the latest SZip version and unpack it into
the target directory:

tar -xzvf szip-2.1.tar.gz

Change to the newly created directory szip-2.1, configure, build and test the
software code:

cd szip-2.1

./configure --prefix=/home/scofield/software/64/szip-2.1/

make

make check

make install

The SZip libraries will be installed into:

/home/scofield/software/64/szip-2.1/libs/

1SZip could be obtained from the HDF Group FTP server at ftp://ftp.hdfgroup.org/
lib-external/szip/2.1/. Last accessed on September 6, 2007.

89

ftp://ftp.hdfgroup.org/lib-external/szip/2.1/
ftp://ftp.hdfgroup.org/lib-external/szip/2.1/

90 Appendix B – Software Installation

Add this directory to the environment variable LD_LIBRARY_PATH for conve-
nient usage:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: \

/home/scofield/software/64/szip-2.1/libs/

This command might also be saved into the user’s bash shell parameter file:

˜/.bashrc

HDF5

Download2 the tarball source code of the latest HDF5 version and unpack it into
the target directory:

tar -xzvf hdf5-1.6.6.tar.gz

Change to the newly created directory hdf5-1.6.6, configure and build the
software code:

cd hdf5-1.6.6

CC= "˜/software/64/mpich2-1.0.5p3/bin/mpicc"

./configure --prefix=˜/software/64/hdf5-1.6.6/ \

--enable-parallel \

--enable-fortran \

--enable-static \

--disable-stream-vdf \

--disable-shared \

--with-szlib=˜/software/64/szip-2.1/libs/ \

--with-zlib=/lib64/:/usr/lib64/

make

2HDF5 could be obtained from the HDF Group FTP server at ftp://ftp.hdfgroup.org/
HDF5/current/src/. Last accessed on September 6, 2007.

ftp://ftp.hdfgroup.org/HDF5/current/src/
ftp://ftp.hdfgroup.org/HDF5/current/src/

HDF5 91

Start the MPI daemon on at least two machines to achieve the real parallelism.
MPI service is needed for running a variety of HDF5 library tests to verify the
installation correctness. Launch MPI daemon and obtain the service’s host name
and port number:

mpd &

mpdtrace -l → <host>-<port>

Login to a different machine and start the MPI daemon specifying the host name
and port number of the first system:

mpd -h <host> -p <port> &

Verify and finalise the HDF5 software installation:

make check

make install

The HDF5 libraries will be installed into:

/home/scofield/software/64/hdf5-1.6.6/libs/

Add this directory to the environment variable LD_LIBRARY_PATH for conve-
nient usage:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: \

/home/scofield/software/64/hdf5-1.6.6/libs/

This command might also be saved into the user’s bash shell parameter file:

˜/.bashrc

Appendix C
Job Management Commands

Appendix C summarises the job management commands used on Horace and
IBM BlueGene/L High Performance Computing systems for program manipula-
tion. The user called ”scofield“ will execute all example commands shown in the
following sections for a Fortran 90 program named fox.f.

Horace

The user has to log in before he will be able to submit a job to the Horace schedul-
ing system:

ssh -X scofield@horace.manchester.ac.uk

Then a program file has to be transferred to the user’s home directory on the
system:

scp ./fox.f scofield@horace.manchester.ac.uk:˜/fox/

Next the user’s code is compiled with an MPI Fortran 90 compiler using the Unix
make utility and a custom Makefile:

make fox

Finally the job is submitted into one of the available execution queues. This is
done by applying the option run of the make utility. Whereas the exact action
sequence is described by the Makefile:

make run

93

94 Appendix C – Job Management Commands

The Horace job submission command bsub is called when launching the pro-
gram with the make utility. The command-line arguments specifying the job exe-
cution character are given in the list below:

-W <mins> – wall time, maximum running time for the job.

-c <cpu_time> – CPU time, maximum processor time for the job.

-P <project> – name of the project to which the job belongs.

-J <job_name> – assign a job name.

-n <procs> – number of requested processors.

-q <queue_name> – submit a job to a specific queue.

-o <out_file> – write program output to a specified file.

-e <err_file> – write error messages to a specified file.

-w <dependency> – start another job after successfull finish of the first one.

-R span [hosts=1] – force the job to execute on a single node.

-B <email_address> – send an e-mail notification, when the job starts.

There is another complementary command prun, which is referred to by the
bsub utility when launching an MPI program:

prun -n <nodes> <executable_file>

When the make utility starts the job, the bsub command is executed, which re-
spectively calls the prun utility. The following line contained in the Makefile
will submit a job to a default queue on Horace:

bsub -n 64 -W 60 -P river -o fox.out -J fox prun -n 8 fox

The program will request 64 processors on 8 nodes. The maximum running time
will be 60 minutes. This job will belong to a project ”river“ and the output will
be redirected to a file fox.out. The job will run under a name ”fox“.

Horace 95

Other important job manipulation utilities for the Horace system are given below:

bsub – submits a job into a queue and assigns it a unique identi-
fication number.

bjobs – returns job identifications and statuses of submitted jobs.

-r – provides the information on running jobs only.

-p – provides the information on pending jobs and gives the
reasons for delays.

-s – provides the information on suspended jobs.

-l <job_id> – provides detailed information about a specific job.

bpeek – returns an update of a job progress by showing the status
of the standard output.

-f – constant job monitoring for further updates.

bkill <job_id> – terminates a submitted job.

96 Appendix C – Job Management Commands

IBM BlueGene/L

There are 8 front-end nodes on the BGL system: bglfen0..7. Each user is as-
signed to a specific node. System user ”scofield“ has two home directories, one
on the front- and another on the back-end node:

/home/scofield/

/bglst1/home/scofield

First the user has to log in to his particular front-end node:

ssh scofield@bglfen1.service.rug.nl

Next the user compiles his program with the IBM XL Fortran 95 compiler
mpixlf95 using the Unix make utility and a custom Makefile:

make fox

Afterwards the produced executable file fox should be copied to the back-end:

cp fox /bglst1/home/scofield/river/

At this time the job could be submitted into an appropriate queue. Executing a
command partlist identifies idle queues ready to accept user jobs. There are 4
types of queues. Each of them has a specific purpose determined by a maximum
number of compute nodes and a running time limit. The queue descriptions are
given in the table below:

Queue Compute Nodes Runtime, Hours

default 32 4
long 1024 24
q72 1024 72
vlong 1024 240

IBM BlueGene/L 97

A command-line utility called cqsub should be used to submit a job into selected
queue on the BGL. There is a number of parameters that should be specified while
placing the job into the queue. The list below gives an overview of the required
command options:

-q <name> – queue name, values: default, long, q72, vlong.

-C <work_dir> – working directory.

-t <max_runtime> – maximum job running time in minutes, job will be
terminated afterwards.

-n <max_nodes> – number of requested computing nodes to run the
job.

-m <mode> – compute mode, values: co – co-processor,
vn – virtual node.

<path_to_prog> – full path to the executable file including the file
name.

When the desired queue is identified the user can submit his job to the BGL
scheduling system:

cqsub -q long \

-C /bglst1/home/scofield/river \

-t 60 \

-n 64 \

/bglst1/home/scofield/river/fox

Launching the command in the specified way will submit the job into the long
queue. The program directory will be /bglst1/home/scofield/river. The
maximum running time for this job will equal to 60 minutes and the program
fox will be executed on 64 computing nodes.

The table below gives additional information on other frequently used command-
line utilities on the BGL:

partlist – prints out the job queue list with the status of each
queue.

cqsub – submits a job into a particular queue, returns the job
identification.

cqstat – prints out the status of a job in a particular queue.

cqdel <job_id> – terminates a job.

Appendix D
Source Code

Appendix D contains the source code listings for data output part of the modified
FD-FDTD simulation program, new plotting utility, original plane visualisation
script and the compilation script for parallel HDF5 programs.

Modified FD-FDTD Simulation Program

fdtd-mpi.F90, Data Output Part

! BEGIN DATA OUTPUT

i f n d e f no output

CALL MPI BARRIER (MPI COMM WORLD, IERR)

i f (output z end .GE. o u t p u t z i n i t .AND.
(t .EQ. 0 .OR. mod(t , output modulus) .EQ. 0)) then

z o f f = o u t p u t z o f f s e t
zmin = o u t p u t z i n i t + z o f f
zmax = output z end + z o f f

f i lename = t o z s t r (rank) // ” ” // t o z s t r (t) // ” . out ”
print ∗ , ” f i l e name : ” , f i lename

d i r f i l e = trim (dirname) // trim (f i lename)

! I n i t i a l i s e t h e wdata a r r a y .

print ∗ , ” z o f f : ” , z o f f

99

100 Appendix D – Source Code

print ∗ , ”xmin : ” , xmin , ”ymin : ” , ymin , ”zmin : ” , zmin
print ∗ , ”xmax : ” , xmax , ”ymax : ” , ymax , ”zmax : ” , zmax
print ∗ , ” nf : ” , nf

a l l o c a t e (wdata (xmax−xmin+1 , ymax−ymin+1 , zmax−zmin+1 , nf) , &
s t a t = e r r)

i f (e r r .NE. 0) then
print ∗ , ”wdata array a l l o c a t i o n : f a i l e d ”
stop

else
pr int ∗ , ”wdata array a l l o c a t i o n : succeeded ”

end i f

! Output s i m u l a t i o n d a t a in ASCII f o r m a t
! r e a s o n −> f o r HDF5 c o r r e c t n e s s c h e c k

12 format (3 I4 , 1G15 . 5)
open (unit =70 , &

f i l e = d i r f i l e , &
access=” s e q u e n t i a l ” , &
form=” formatted ” , &
s t a t u s =”new” , i o s t a t = i o s)

i f (i o s .NE. 0) then
print ∗ , ” Error opening” , d i r f i l e , ” f o r w r i t t i n g ”
stop

endif

! I n i t i a l i s e o u tp ut b u f f e r ’ wdata ’
do i = 1 , xmax−xmin+1

do j = 1 , ymax−ymin+1
do k = 1 , zmax−zmin+1

do f = 1 , nf
wdata (i , j , k , f) = 0 . 0

end do
end do

end do
end do

! S t a r t c o n v e n t i o n a l d a t a o u tp ut and b u f f e r f i l l in
print ∗ , ” Entered main output loop ”
do i = xmin , xmax

do j = ymin , ymax
do k = zmin , zmax

Modified FD-FDTD Simulation Program fdtd-mpi.F90, Data Output Part 101

write (7 0 , 1 2) &
i , j , k , &
r e a l (hx (i , j , k))

end do
end do

end do

close (unit =70)

do i = xmin , xmax
do j = ymin , ymax

do k = zmin , zmax
wdata (i , j , k , 1) = i
wdata (i , j , k , 2) = j
wdata (i , j , k , 3) = k
wdata (i , j , k , 4) = REAL(hx (i , j , k))

end do
end do

end do

print ∗ , ” output b u f f e r f i l l e d in s u c c e s s f u l l y ”

! I n i t i a l i z e FORTRAN i n t e r f a c e .
CALL h5open f (e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 i n t e r f a c e i n i t i a l i s a t i o n : f a i l e d ”

e lse
pr int ∗ , ”h5 i n t e r f a c e i n i t i a l i s a t i o n : succeeded ”

end i f

! C r e a t e a new f i l e us ing d e f a u l t p r o p e r t i e s .
f i lename (1 2 :) =” . h5”
d i r f i l e = trim (dirname) // fi lename

CALL h 5 f c r e a t e f (d i r f i l e , H5F ACC TRUNC F , f i l e i d , e r r)
i f (e r r .EQ. −1) then

print ∗ , ”h5 f i l e c r e a t i o n : f a i l e d ”
e lse

pr int ∗ , ”h5 f i l e c r e a t i o n : succeeded ”
end i f

! C r e a t e a new group ” / MyGroup”
CALL h 5 g c r e a t e f (f i l e i d , groupname , group id , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 group c r e a t i o n : f a i l e d ”

102 Appendix D – Source Code

e lse
pr int ∗ , ”h5 group c r e a t i o n : succeeded ”

end i f

! C r e a t e a d a t a s p a c e .
dims = (/xmax−xmin+1 , ymax−ymin+1 , zmax−zmin+1/)

print ∗ , ” dataspace dims : ” , dims

CALL h 5 s c r e a t e s i m p l e f (drank , dims , dspace id , e r r)
i f (e r r .EQ. −1) then

print ∗ , ”h5 dataspace c r e a t i o n : f a i l e d ”
e lse

pr int ∗ , ”h5 dataspace c r e a t i o n : succeeded ”
end i f

! C r e a t e an a r r a y d a t a t y p e t o s t o r e EM−v a l u e s .
CALL h 5 t a r r a y c r e a t e f (H5T IEEE F32LE , dtype rank , dtype dim , &

dtype id , e r r)
i f (e r r .EQ. −1) then

print ∗ , ”h5 array datatype−f c r e a t i o n : f a i l e d ”
e lse

pr int ∗ , ”h5 array datatype−f c r e a t i o n : succeeded ”
end i f

CALL h 5 t a r r a y c r e a t e f (H5T NATIVE REAL , dtype rank , dtype dim , &
dtypemem id , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 array datatype−m c r e a t i o n : f a i l e d ”

e lse
pr int ∗ , ”h5 array datatype−m c r e a t i o n : succeeded ”

end i f

! S e t d a t a s e t c r e a t i o n p r o p e r t y l i s t
! t o c r e a t e chunked d a t a s e t and use z l i b c o m p r e s s i o n

CALL h 5 p c r e a t e f (H5P DATASET CREATE F , dset prop id , e r r)
i f (e r r .EQ. −1) then

print ∗ , ”h5 property l i s t c r e a t i o n : f a i l e d ”
e lse

pr int ∗ , ”h5 property l i s t c r e a t i o n : succeeded ”
end i f

xchunk = 5
ychunk = 5
zchunk = 5

Modified FD-FDTD Simulation Program fdtd-mpi.F90, Data Output Part 103

chunk dims = (/ xchunk , ychunk , zchunk /)

CALL h5pset chunk f (dset prop id , chunk rank , chunk dims , e r r)
i f (e r r .EQ. −1) then

print ∗ , ”h5 s e t chunking : f a i l e d ”
e lse

pr int ∗ , ”h5 s e t chunking : succeeded ”
end i f

CALL h 5 p s e t s h u f f l e f (dset prop id , e r r)
i f (e r r .EQ. −1) then

print ∗ , ”h5 s e t s h u f f l i n g : f a i l e d ”
e lse

pr int ∗ , ”h5 s e t s h u f f l i n g : succeeded ”
end i f

CALL h 5 p s e t d e f l a t e f (dset prop id , 6 , e r r)
i f (e r r .EQ. −1) then

print ∗ , ”h5 s e t z l i b compression : f a i l e d ”
e lse

pr int ∗ , ”h5 s e t z l i b compression : succeeded ”
end i f

! C r e a t e a d a t a s e t wi th a c u s t o m i s e d p r o p e r t y c r e a t i o n l i s t .
CALL h 5 d c r e a t e f (group id , dsetname , dtype id , &

dspace id , dse t id , err , dse t prop id)
i f (e r r .EQ. −1) then

print ∗ , ”h5 d a t a s e t c r e a t i o n : f a i l e d ”
e lse

pr int ∗ , ”h5 d a t a s e t c r e a t i o n : succeeded ”
end i f

pr int ∗ , ” f i l e wri t ing dims : ” , dims

! Wri te t h e d a t a s e t from an a r r a y wdata i n t o f i l e .
CALL h5dwri te f (dse t id , dtypemem id , wdata , dims , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 wri t ing d a t a s e t i n t o f i l e : f a i l e d ”

e lse
pr int ∗ , ”h5 wri t ing d a t a s e t i n t o f i l e : succeeded ”

end i f

d e a l l o c a t e (wdata , s t a t = e r r)
i f (e r r .NE. 0) then

print ∗ , ”wdata array d e a l l o c a t i o n : f a i l e d ”

104 Appendix D – Source Code

stop
else

pr int ∗ , ”wdata array d e a l l o c a t i o n : succeeded ”
end i f

a l l o c a t e (rdata (xmax−xmin+1 , ymax−ymin+1 , zmax−zmin+1 , nf) , &
s t a t = e r r)

i f (e r r .NE. 0) then
print ∗ , ”wdata array a l l o c a t i o n : f a i l e d ”
stop

else
pr int ∗ , ”wdata array a l l o c a t i o n : succeeded ”

end i f

! Read t h e d a t a s e t from a f i l e i n t o an a r r a y wdata .
CALL h5dread f (dse t id , dtypemem id , rdata , dims , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 wri t ing d a t a s e t i n t o f i l e : f a i l e d ”

e lse
pr int ∗ , ”h5 wri t ing d a t a s e t i n t o f i l e : succeeded ”

end i f

do i = xmin , xmax
do j = ymin , ymax

do k = zmin , zmax
print ” (A, 3 I2 , A, 4G15 . 5) ” , &

” rdata (” , i , j , k , ”) : ” , rdata (i , j , k , 1 : 4)
end do

end do
end do

d e a l l o c a t e (rdata , s t a t = e r r)
i f (e r r .NE. 0) then

print ∗ , ” rdata array d e a l l o c a t i o n : f a i l e d ”
stop

else
pr int ∗ , ” rdata array d e a l l o c a t i o n : succeeded ”

end i f

! Te rmina t e a c c e s s t o t h e d a t a s p a c e in f i l e .
CALL h 5 s c l o s e f (dspace id , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 c l o s i n g dataspace : f a i l e d ”

e lse
pr int ∗ , ”h5 c l o s i n g dataspace : succeeded ”

Modified FD-FDTD Simulation Program fdtd-mpi.F90, Data Output Part 105

end i f

! Te rmina t e d a t a s e t c r e a t i o n p r o p e r t y l i s t .
CALL h 5 p c l o s e f (dset prop id , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 c l o s i n g property l i s t : f a i l e d ”

e lse
pr int ∗ , ”h5 c l o s i n g property l i s t : succeeded ”

end i f

! Te rmina t e a c c e s s t o t h e a r r a y d a t a t y p e s in f i l e and memory .
CALL h 5 t c l o s e f (dtype id , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 c l o s i n g array−f datatype : f a i l e d ”

e lse
pr int ∗ , ”h5 c l o s i n g array−f datatype : succeeded ”

end i f

CALL h 5 t c l o s e f (dtypemem id , e r r)
i f (e r r .EQ. −1) then

print ∗ , ”h5 c l o s i n g array−m datatype : f a i l e d ”
e lse

pr int ∗ , ”h5 c l o s i n g array−m datatype : succeeded ”
end i f

! Te rmina t e a c c e s s t o t h e d a t a s e t and r e l e a s e r e s o u r c e s used by i t .
CALL h 5 d c l o s e f (dse t id , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 c l o s i n g d a t a s e t : f a i l e d ”

e lse
pr int ∗ , ”h5 c l o s i n g d a t a s e t : succeeded ”

end i f

! Te rmina t e a c c e s s t o ” / Group”
CALL h 5 g c l o s e f (group id , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 c l o s i n g group : f a i l e d ”

e lse
pr int ∗ , ”h5 c l o s i n g group : succeeded ”

end i f

! Te rmina t e a c c e s s t o t h e f i l e .
CALL h 5 f c l o s e f (f i l e i d , e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 c l o s i n g f i l e : f a i l e d ”

106 Appendix D – Source Code

e lse
pr int ∗ , ”h5 c l o s i n g f i l e : succeeded ”

end i f

! C l o s e FORTRAN i n t e r f a c e .
CALL h 5 c l o s e f (e r r)

i f (e r r .EQ. −1) then
print ∗ , ”h5 c l o s i n g f o r t r a n i n t e r f a c e : f a i l e d ”

e lse
pr int ∗ , ”h5 c l o s i n g f o r t r a n i n t e r f a c e : succeeded ”

end i f

end i f

endif

! END DATA OUTPUT

New Point Plotting Utility plotPoints.F90 107

New Point Plotting Utility

plotPoints.F90

PROGRAM PLOTPOINTS

USE HDF5
IMPLICIT NONE

INTEGER, EXTERNAL : : get valency , e x i s t s
CHARACTER(5) , EXTERNAL : : t o s t r , t o z s t r

! D e f i n e x , y , z c o o r d i n a t e r a n g e s and number
! o f EM− f i e l d v a l u e s t o s t o r e

INTEGER, PARAMETER : : xmin=1 , xmax=10
INTEGER, PARAMETER : : ymin=1 , ymax=10
INTEGER, PARAMETER : : zmin=1 , zmax=10
INTEGER, PARAMETER : : nf =4

CHARACTER(6 4) : : p o i n t f i l e =” points ” , param f i l e=”params”
CHARACTER(6 4) : : f i lename
CHARACTER : : space
CHARACTER(7) , PARAMETER : : groupname = ”MyGroup” ! Group name
CHARACTER(9) , PARAMETER : : dsetname = ”MyDataset” ! D a t a s e t name

INTEGER(HID T) : : f i l e i d ! F i l e i d e n t i f i e r
INTEGER(HID T) : : group id ! Group i d e n t i f i e r
INTEGER(HID T) : : d s e t i d ! D a t a s e t i d e n t i f i e r
INTEGER(HID T) : : dspace id ! D a t a s p a c e i d e n t i f i e r
INTEGER(HID T) : : dspacemem id ! Memory d a t a s p a c e i d e n t i f i e r
INTEGER(HID T) : : dtype id ! Array d a t a t y p e i d e n t i f i e r
INTEGER(HID T) : : dtypemem id ! Memory a r r a y d a t a t y p e i d e n t i f i e r

! D a t a s e t d imens i on s i z e s and rank
INTEGER(HSIZE T) : : dims (3) = (/xmax−xmin+1 , &

ymax−ymin+1 , &
zmax−zmin+1/)

INTEGER, PARAMETER : : drank = 3

! I n d i v i d u a l p o i n t s e l e c t i o n p a r a m e t e r s
! Number o f p o i n t s s e l e c t e d

INTEGER : : pts

108 Appendix D – Source Code

! P o i n t c o o r d i n a t e a r r a y
INTEGER, ALLOCATABLE, DIMENSION (: , :) : : co

! CPU r a n k s with c o o r d i n a t e r a n g e s
INTEGER, ALLOCATABLE, DIMENSION (: , :) : : ranges

! D i s t i n c t CPU r a n k s
INTEGER, ALLOCATABLE, DIMENSION (:) : : ranks

! P l o t f i l e names
CHARACTER(6 4) , ALLOCATABLE, DIMENSION (:) : : p l o t f i l e

! Array d a t a t y p e ’ s d imens i on and rank
INTEGER(HSIZE T) : : dtype dim (1) = nf
INTEGER : : dtype rank = 1

! Read d a t a b u f f e r
REAL, DIMENSION(xmax−xmin+1 , ymax−ymin+1 , zmax−zmin+1 , nf) : :

rdata

INTEGER : : e r r ! E r r o r f l a g
INTEGER : : i , j , r , p ! Loop c o u n t e r s
INTEGER : : t , t i n i t , t end ! T i m e s t e p range
INTEGER : : np ! Number o f p r o c e s s o r s
INTEGER : : d i v a x i s ! D i v i s i o n a x i s (x =1 , y =2 , z =3)
INTEGER : : rank = 0 ! P a r a l l e l v e r s i o n −−> MPI rank

! ===

! Read s i m u l a t i o n p a r a m e t e r s
open (unit =9 , &

f i l e =param fi le , &
s t a t u s =” old ” , &
i o s t a t = e r r)

i f (e r r .NE. 0) then
print ∗ , ” Error opening ’ ” , param fi le , ” ’ f o r reading ”
stop

endif

read (9 ,∗ , i o s t a t = e r r) space , t i n i t , t end
print ” (A, I5 , A, I5) ” , ” t i n i t : ” , t i n i t , ” , t end : ” , t end

read (9 ,∗ , i o s t a t = e r r) space , np
print ” (A, I5) ” , ”np : ” , np

New Point Plotting Utility plotPoints.F90 109

a l l o c a t e (ranges (np , 3) , s t a t = e r r)
i f (e r r .NE. 0) then

print ∗ , ” ’ ranges ’ array a l l o c a t i o n : f a i l e d ”
stop

end i f

do i =1 , np
read (9 ,∗ , i o s t a t = e r r) space , ranges (i , 1 : 3)
print ” (A, 3 I5) ” , ” ranges (i , 0 : 1) : ” , ranges (i , 1 : 3)

end do

read (9 ,∗ , i o s t a t = e r r) space , d i v a x i s
print ” (A, I1) ” , ” d i v i s i o n a x i s : ” , d i v a x i s

c lose (unit =9)

! Read c o o r d i n a t e s o f p o i n t s t o p l o t .
open (unit =10 , &

f i l e = p o i n t f i l e , &
s t a t u s =” old ” , &
i o s t a t = e r r)

i f (e r r .NE. 0) then
print ∗ , ” Error opening ’ ” , p o i n t f i l e , ” ’ f o r reading ”
stop

endif

read (1 0 ,∗ , i o s t a t = e r r) pts

a l l o c a t e (co (pts , drank +1) , s t a t = e r r)
i f (e r r .NE. 0) then

print ∗ , ” ’ co ’ array a l l o c a t i o n : f a i l e d ”
stop

end i f

a l l o c a t e (ranks (pts) , s t a t = e r r)
i f (e r r .NE. 0) then

print ∗ , ” ’ ranks ’ array a l l o c a t i o n : f a i l e d ”
stop

end i f

do i =1 , pts
ranks (i) = −1

end do

110 Appendix D – Source Code

! Read p o i n t and d e t e r m i n e p r o c e s s o r rank f o r i t .
do i =1 , pts

read (1 0 ,∗ , i o s t a t = e r r) co (i , 2 : drank +1)

do j =1 , np
i f ((co (i , d i v a x i s +1) .GE. ranges (j , 2)) .AND. (co (i , d i v a x i s +1)

. LE . ranges (j , 3))) then
co (i , 1) = ranges (j , 1)
i f (e x i s t s (co (i , 1) , ranks , pts) == 0) ranks (i) = co (i , 1)
e x i t

end i f
end do

print ” (A, 4 I5) ” , ”co (i , 2 : drank +1) : ” , co (i , 1 : drank +1)
end do

print ∗ , ” ranks : ” , ranks (1 : pts)

c lose (unit =10)

! G e n e r a t e t a r g e t p o i n t s ’ d a t a f i l e names .
! C r e a t e and open dat− f i l e s .
! For p a r a l l e l v e r s i o n : c u r r e n t p r o c e s s o r rank −−> dat− f i l e name

a l l o c a t e (p l o t f i l e (pts) , s t a t = e r r)
i f (e r r .NE. 0) then

print ∗ , ” ’ p l o t f i l e ’ array a l l o c a t i o n : f a i l e d ”
stop

end i f

do i =1 , pts
p l o t f i l e (i) = trim (t o s t r (co (i , 2))) // ”−” // &

trim (t o s t r (co (i , 3))) // ”−” // &
trim (t o s t r (co (i , 4))) // ” ” // &
t o z s t r (rank) // ” . dat ”

100 format (1 I5 , 4G15 . 5)
open (unit =10+ i , &

f i l e =trim (p l o t f i l e (i)) , &
access=” s e q u e n t i a l ” , &
form=” formatted ” , &
s t a t u s =”new” , &
i o s t a t = e r r)

New Point Plotting Utility plotPoints.F90 111

i f (e r r .NE. 0) then
print ∗ , ” Error opening ” , tr im (p l o t f i l e (i)) , ” f o r w r i t t i n g ”
stop

endif

end do

! I n i t i a l i z e FORTRAN i n t e r f a c e .
CALL h5open f (e r r)

! Re pe a t f o r e a c h h5− f i l e
do r =1 , pts

i f (ranks (r) .NE.−1) then ! For a l l d i s t i n c t CPU r a n k s
do t = t i n i t , t end

fi lename = t o z s t r (ranks (r)) // ” ” // t o z s t r (t) // ” . h5”
print ∗ , ” f i lename : ” , f i lename

! Open f i l e .
CALL h5fopen f (fi lename , H5F ACC RDWR F, f i l e i d , e r r)

! Open group .
CALL h5gopen f (f i l e i d , groupname , group id , e r r)

! Open d a t a s e t .
CALL h5dopen f (group id , dsetname , dse t id , e r r)

! Get d a t a s e t ’ s d a t a s p a c e i d e n t i f i e r .
CALL h5dget space f (dse t id , dspace id , e r r)

! C r e a t e an a r r a y d a t a t y p e t o s t o r e EM−v a l u e s .
CALL h 5 t a r r a y c r e a t e f (H5T IEEE F32LE , dtype rank , &

dtype dim , dtype id , e r r)

CALL h 5 t a r r a y c r e a t e f (H5T NATIVE REAL , dtype rank , &
dtype dim , dtypemem id , e r r)

! Read t h e d a t a s e t from a f i l e i n t o an a r r a y r d a t a .
CALL h5dread f (dse t id , dtypemem id , rdata , dims , e r r)

! Wri te s p e c i f i c p o i n t s ’ v a l u e s i n t o c o r r e s p o n d i n g dat− f i l e .
do p=1 , pts

i f (co (p , 1) .EQ. ranks (r)) then

112 Appendix D – Source Code

print ∗ , ” point ” , p
print ∗ , rdata (co (p , 2) , co (p , 3) , co (p , 4) , 1 : nf)
print ∗ , ””

write (10+p , 1 0 0) t , rdata (co (p , 2) , co (p , 3) , co (p , 4) , 1 :
nf)

end i f
end do

! Te rmina t e a c c e s s t o t h e d a t a s p a c e in f i l e .
CALL h 5 s c l o s e f (dspace id , e r r)

! Te rmina t e a c c e s s t o t h e d a t a s e t and r e l e a s e r e s o u r c e s used
by i t .

CALL h 5 d c l o s e f (dse t id , e r r)

! Te rmina t e a c c e s s t o t h e f i l e .
CALL h 5 f c l o s e f (f i l e i d , e r r)

end do
end i f

end do

! C l o s e dat− f i l e s .
do i =1 , pts

c lose (unit =10+ i)
end do

! C l o s e FORTRAN i n t e r f a c e .
CALL h 5 c l o s e f (e r r)

END PROGRAM PLOTPOINTS

! C a l c u l a t e s v a l e n c y o f a number . Valency i s t h e number o f d i g i t s in a
! number .
! Param : n − g i v e n number , t y p e i n t e g e r

INTEGER FUNCTION get va lency (n)
IMPLICIT NONE

! Input argument d e c l a r a t i o n
INTEGER, INTENT(IN) : : n

ge t va lency = i n t (f l o o r (log10 (r e a l (n)))) + 1

New Point Plotting Utility plotPoints.F90 113

END FUNCTION get va lency

! C o n v e r t s an i n t e g e r i n t o s t r i n g .
! Param : n − g i v e n number , t y p e i n t e g e r

CHARACTER(5) FUNCTION t o s t r (n)
IMPLICIT NONE

! Input argument d e c l a r a t i o n
INTEGER, INTENT(IN) : : n

write (t o s t r , ” (I5) ”) n
t o s t r = trim (a d j u s t l (t o s t r))

END FUNCTION t o s t r

! C o n v e r t s an i n t e g e r i n t o a ze ro−l e d s t r i n g .
! Param : n − g i v e n number , t y p e i n t e g e r

CHARACTER(5) FUNCTION t o z s t r (n)
IMPLICIT NONE
INTEGER, EXTERNAL : : ge t va lency
CHARACTER(5) , EXTERNAL : : t o s t r

! Input argument d e c l a r a t i o n
INTEGER, INTENT(IN) : : n

t o z s t r = ” 00000 ”
t o z s t r (5−get va lency (n) + 1 : 5) = trim (t o s t r (n))

END FUNCTION t o z s t r

! Checks whe the r an e l e m e n t e x i s t s in a s e t .
! Param : l − g i v e n e l ement , t y p e i n t e g e r
! s e t − s e t o f e l e m e n t s , t y p e 1−d i n t e g e r a r r a y
! upper − upper bound o f s e t

INTEGER FUNCTION e x i s t s (l , se t , upper)
IMPLICIT NONE

! Input argument d e c l a r a t i o n

114 Appendix D – Source Code

INTEGER, INTENT(IN) : : l , upper
INTEGER, INTENT(IN) : : s e t (upper)

INTEGER : : i

e x i s t s = 0

do i = 1 , upper
i f (l .EQ. s e t (i)) then

e x i s t s = 1
e x i t

end i f
end do

END FUNCTION e x i s t s

Original Plane Visualisation Utility visualisePlane.csh 115

Original Plane Visualisation Utility

visualisePlane.csh

! / b in / c s h

s e t aftermax = 5

s e t f i x l o c a t i o n = $argv [1]
s e t CPU ID = $argv [2]
s e t p r e f i x =/home/maksims/workspace/data

p l a i n t o s e e = 1 f o r x− f i x e d p l a i n
p l a i n t o s e e = 2 f o r y− f i x e d p l a i n
p l a i n t o s e e = 3 f o r z− f i x e d p l a i n

s e t p l a i n t o s e e = 3
s e t seecolumn = 4
s e t xa x i s = 2
s e t yaxis = 1

mkdir $ f i x l o c a t i o n
cd $ f i x l o c a t i o n
echo ”” > empty

x a x i s in t h e f i g u r e d i s p l a y s y−>2,z−>3,x−>1
y a x i s in t h e f i g u r e d i s p l a y s y−>2,z−>3,x−>1

s e t k = 1
while ($k < 10)
s e t maxvalue = 100000000000
c a t $ p r e f i x / E f i e l d 0 0 0 0 ”$k” $CPU ID . out | \
awk ’{ print $1 , $2 , $3 , $4/1e18 } ’ | \
gawk −v f i x l o c a t i o n = $ f i x l o c a t i o n \

−v p l a i n t o s e e = $ p l a i n t o s e e \
−v seecolumn=$seecolumn \
−v x ax i s=$xax is \
−v yaxis=$yaxis \

’ ($ p l a i n t o s e e == f i x l o c a t i o n) {print $xaxis , $yaxis , (($seecolumn∗
$seecolumn)) }’> t e s t

s e t xrangemax = ‘ c a t t e s t | s o r t −n −k 1 | t a i l −1 | awk ’{ print $1
} ’ ‘

s e t xrangemin = ‘ c a t t e s t | s o r t −nr −k 1 | t a i l −1 | awk ’{ print $1
} ’ ‘

@ xrange = 1 + $xrangemax − $xrangemin

116 Appendix D – Source Code

s e t yrangemax = ‘ c a t t e s t | s o r t −n −k 2 | t a i l −1 | awk ’{ print $2
} ’ ‘

s e t yrangemin = ‘ c a t t e s t | s o r t −nr −k 2 | t a i l −1 | awk ’{ print $2
} ’ ‘

@ yrange = 1 + $yrangemax − $yrangemin

s e t min = ‘ c a t t e s t | s o r t −gr −k 3 | t a i l −1 | awk ’{ print $3 } ’ ‘
s e t max = ‘ c a t t e s t | s o r t −g −k 3 | t a i l −1 | awk ’{ print $3 } ’ ‘
s e t range = ‘ c a t empty |awk −v min=$min −v max=$max ’{ print max − min} ’ ‘
echo $range , $min , $maxvalue
c a t t e s t | awk −v range=$range −v min=$min −v maxvalue=$maxvalue \
’{ print $1 , $2 , i n t (((($3−min) /range) ∗∗0 .2∗maxvalue) ∗∗0 . 5) } ’ > t e s t 2
echo ”P2” > t e s t .pgm
echo ”# t e s t ” >> t e s t .pgm
echo $xrange $yrange >> t e s t .pgm
echo ”” | awk −v maxvalue=$maxvalue ’{ print i n t ((maxvalue) ∗∗0 . 5) } ’ >>

t e s t .pgm
c a t t e s t 2 | awk ’{ print $3 } ’ >> t e s t .pgm
c a t t e s t .pgm | \
awk ’ ((NR > 4)&&($1 < 1)) {print 0 } ((NR > 4)&& ($1 > 0)) {print $0 } (NR <

5) {print $0 } ’ > t e s t t e s t .pgm
mv t e s t t e s t .pgm t e s t .pgm
/home/maksims/workspace/ s r c /post/pgm2ppm
c a t t e s t .ppm | awk ’ (NR == 1) {print $1 } (NR > 1) {print $0 } ’ > t e s t $ k .ppm
@ k ++
end

#===

s e t k = 10
while ($k < 100)
s e t maxvalue = 1000
c a t $ p r e f i x / E f i e l d 0 0 0 ”$k” $CPU ID . out | \
awk ’{ print $1 , $2 , $3 , $4/1e18 } ’ | \
gawk −v f i x l o c a t i o n = $ f i x l o c a t i o n \

−v p l a i n t o s e e = $ p l a i n t o s e e \
−v seecolumn=$seecolumn \
−v x ax i s=$xax is \
−v yaxis=$yaxis \

’ ($ p l a i n t o s e e == f i x l o c a t i o n) {print $xaxis , $yaxis , (($seecolumn∗
$seecolumn)) } ’ > t e s t

s e t xrangemax = ‘ c a t t e s t | s o r t −n −k 1 | t a i l −1 | awk ’{ print $1
} ’ ‘

Original Plane Visualisation Utility visualisePlane.csh 117

s e t xrangemin = ‘ c a t t e s t | s o r t −nr −k 1 | t a i l −1 | awk ’{ print $1
} ’ ‘

@ xrange = 1 + $xrangemax − $xrangemin

s e t yrangemax = ‘ c a t t e s t | s o r t −n −k 2 | t a i l −1 | awk ’{ print $2
} ’ ‘

s e t yrangemin = ‘ c a t t e s t | s o r t −nr −k 2 | t a i l −1 | awk ’{ print $2
} ’ ‘

@ yrange = 1 + $yrangemax − $yrangemin

s e t min = ‘ c a t t e s t | s o r t −gr −k 3 | t a i l −1 | awk ’{ print $3 } ’ ‘
s e t max = ‘ c a t t e s t | s o r t −g −k 3 | t a i l −1 | awk ’{ print $3 } ’ ‘
s e t range = ‘ c a t empty |awk −v min=$min −v max=$max ’{ print max − min} ’ ‘
c a t t e s t | awk −v range=$range −v min=$min −v maxvalue=$maxvalue \
’{ print $1 , $2 , i n t (((($3−min) /range) ∗∗0 .2∗maxvalue) ∗∗0 . 5) } ’ > t e s t 2
echo ”P2” > t e s t .pgm
echo ”# t e s t ” >> t e s t .pgm
echo $xrange $yrange >> t e s t .pgm
echo ”” | awk −v maxvalue=$maxvalue ’{ print i n t ((maxvalue) ∗∗0 . 5) } ’ >>

t e s t .pgm

c a t t e s t 2 | awk ’{ print $3 } ’ >> t e s t .pgm
c a t t e s t .pgm | awk ’ ((NR > 4)&&($1 < 1)) {print 0 } ((NR > 4)&& ($1 > 0))
{print $0 } (NR < 5) {print $0 } ’ > t e s t t e s t .pgm

mv t e s t t e s t .pgm t e s t .pgm
/home/maksims/workspace/ s r c /post/pgm2ppm
c a t t e s t .ppm | awk ’ (NR == 1) {print $1 } (NR > 1) {print $0 } ’ > t e s t $ k .ppm
@ k ++
end

#===

s e t k = 100
while ($k < 1000)
s e t maxvalue = 1000

c a t $ p r e f i x / E f i e l d 0 0 ”$k” $CPU ID . out | \
awk ’{ print $1 , $2 , $3 , $4/1e18 } ’ | \
gawk −v f i x l o c a t i o n = $ f i x l o c a t i o n \

−v p l a i n t o s e e = $ p l a i n t o s e e \
−v seecolumn=$seecolumn \
−v x ax i s=$xax is \
−v yaxis=$yaxis \

’ ($ p l a i n t o s e e == f i x l o c a t i o n) {print $xaxis , $yaxis , (($seecolumn∗
$seecolumn)) } ’ > t e s t

118 Appendix D – Source Code

s e t xrangemax = ‘ c a t t e s t | s o r t −n −k 1 | t a i l −1 | awk ’{ print $1
} ’ ‘

s e t xrangemin = ‘ c a t t e s t | s o r t −nr −k 1 | t a i l −1 | awk ’{ print $1
} ’ ‘

@ xrange = 1 + $xrangemax − $xrangemin

s e t yrangemax = ‘ c a t t e s t | s o r t −n −k 2 | t a i l −1 | awk ’{ print $2
} ’ ‘

s e t yrangemin = ‘ c a t t e s t | s o r t −nr −k 2 | t a i l −1 | awk ’{ print $2
} ’ ‘

@ yrange = 1 + $yrangemax − $yrangemin

s e t min = ‘ c a t t e s t | s o r t −gr −k 3 | t a i l −1 | awk ’{ print $3 } ’ ‘
s e t max = ‘ c a t t e s t | s o r t −g −k 3 | t a i l −1 | awk ’{ print $3 } ’ ‘
s e t range = ‘ c a t empty |awk −v min=$min −v max=$max ’{ print max − min} ’ ‘
c a t t e s t | awk −v range=$range −v min=$min −v maxvalue=$maxvalue \
’{ print $1 , $2 , i n t (((($3−min) /range) ∗∗0 .2∗maxvalue) ∗∗0 . 5) } ’ > t e s t 2
echo ”P2” > t e s t .pgm
echo ”# t e s t ” >> t e s t .pgm
echo $xrange $yrange >> t e s t .pgm
echo ”” | awk −v maxvalue=$maxvalue ’{ print i n t ((maxvalue) ∗∗0 . 5) } ’ >>

t e s t .pgm
c a t t e s t 2 | awk ’{ print $3 } ’ >> t e s t .pgm
c a t t e s t .pgm | awk ’ ((NR > 4)&&($1 < 1)) {print 0 } ((NR > 4)&& ($1 > 0))
{print $0 } (NR < 5) {print $0 } ’ > t e s t t e s t .pgm

mv t e s t t e s t .pgm t e s t .pgm
/home/maksims/workspace/ s r c /post/pgm2ppm
c a t t e s t .ppm | awk ’ (NR == 1) {print $1 } (NR > 1) {print $0 } ’ > t e s t $ k .ppm
@ k ++
end

#===

s e t k = 1000
while ($k < 5000)
s e t maxvalue = 1000

c a t $ p r e f i x / E f i e l d 0 ”$k” $CPU ID . out | awk ’{ print $1 , $2 , $3 , $4/1e18 } ’
| \

gawk −v f i x l o c a t i o n = $ f i x l o c a t i o n \
−v p l a i n t o s e e = $ p l a i n t o s e e \
−v seecolumn=$seecolumn \
−v x ax i s=$xax is \
−v yaxis=$yaxis \

Original Plane Visualisation Utility visualisePlane.csh 119

’ ($ p l a i n t o s e e == f i x l o c a t i o n) {print $xaxis , $yaxis , (($seecolumn∗
$seecolumn)) } ’ > t e s t

s e t xrangemax = ‘ c a t t e s t | s o r t −n −k 1 | t a i l −1 | awk ’{ print $1
} ’ ‘

s e t xrangemin = ‘ c a t t e s t | s o r t −nr −k 1 | t a i l −1 | awk ’{ print $1
} ’ ‘

@ xrange = 1 + $xrangemax − $xrangemin

s e t yrangemax = ‘ c a t t e s t | s o r t −n −k 2 | t a i l −1 | awk ’{ print $2
} ’ ‘

s e t yrangemin = ‘ c a t t e s t | s o r t −nr −k 2 | t a i l −1 | awk ’{ print $2
} ’ ‘

@ yrange = 1 + $yrangemax − $yrangemin

s e t min = ‘ c a t t e s t | s o r t −gr −k 3 | t a i l −1 | awk ’{ print $3 } ’ ‘
s e t max = ‘ c a t t e s t | s o r t −g −k 3 | t a i l −1 | awk ’{ print $3 } ’ ‘
s e t range = ‘ c a t empty |awk −v min=$min −v max=$max ’{ print max − min} ’ ‘
c a t t e s t | awk −v range=$range −v min=$min −v maxvalue=$maxvalue \
’{ print $1 , $2 , i n t (((($3−min) /range) ∗∗0 .2∗maxvalue) ∗∗0 . 5) } ’ > t e s t 2
echo ”P2” > t e s t .pgm
echo ”# t e s t ” >> t e s t .pgm
echo $xrange $yrange >> t e s t .pgm
echo ”” | awk −v maxvalue=$maxvalue ’{ print i n t ((maxvalue) ∗∗0 . 5) } ’ >>

t e s t .pgm

c a t t e s t 2 | awk ’{ print $3 } ’ >> t e s t .pgm
c a t t e s t .pgm | awk ’ ((NR > 4)&&($1 < 1)) {print 0 } ((NR > 4)&& ($1 > 0))
{print $0 } (NR < 5) {print $0 } ’ > t e s t t e s t .pgm

mv t e s t t e s t .pgm t e s t .pgm
/home/maksims/workspace/ s r c /post/pgm2ppm
c a t t e s t .ppm | awk ’ (NR == 1) {print $1 } (NR > 1) {print $0 } ’ > t e s t $ k .ppm
@ k ++
end

e x i t 0

120 Appendix D – Source Code

Compilation Script for Parallel HDF5 Programs

h5compile.sh

! / b in / bash

fullname=$1
basename= ‘basename $fullname . F90 ‘

h5pfc −c $fullname
h5pfc −o $basename $basename . o

e x i t 0

Bibliography

[Bér94] Jean-Pierre Bérenger. A perfectly matched layer for the absorption of
electromagnetic waves. Journal of Computational Physics, 114(2):185–
200, 1994.

[Cos05] Fumie Costen. High Speed Computational Modelling in the Application
of UWB Signals. PhD thesis, University of Kyoto, Japan, 2005.

[Cos06] João Costa. Application of high performance computing to FDTD for
UWB systems, September 2006.

[CYCA03] Christian M. Chilan, MuQun Yang, Albert Cheng, and Leon Arber.
Parallel I/O performance study with HDF5, a scientific data pack-
age. Technical report, The National Center for Supercomputing Ap-
plications, University of Illinois at Urbana-Champaign, 2003.

[EPL94] T. M. R. Ellis, Ivor R. Phillips, and Thomas M. Lahey. Fortran 90
Programming. Addison-Wesley, 1st edition, May 1994.

[Fol02] Mike Folk. Introduction to HDF5, presentation slides. Technical re-
port, The National Center for Supercomputing Applications, Univer-
sity of Illinois at Urbana-Champaign, 2002.

[GBOM04] S. González Garcı́a, A. Rubio Bretones, B. Garcı́a Olmedo, and
R. Gómez Martı́n. Time Domain Techniques in Computational Electro-
magnetics. WIT Press / Computational Mechanics, 2004.

[GLNS+05] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay,
David J. DeWitt, and Gerd Heber. Scientific data management in the
coming decade. ACM SIGMOD Record, 34(4):34–41, January 2005.

121

122 BIBLIOGRAPHY

[GMSS07] Lakner Gary, Gary L. Mullen-Schultz, and Carlos Sosa. IBM System
Blue Gene Solution: Application Development. IBM International Tech-
nical Support Organization, June 2007.

[Gro02] The HDF5 Group. HDF5 wins 2002 R & D 100 award. Technical
report, The National Center for Supercomputing Applications, Uni-
versity of Illinois at Urbana-Champaign, 2002.

[Gro04] The HDF5 Group. Performance evaluation report: gzip, bzip2 com-
pression with and without shuffling algorithm. Technical report, The
National Center for Supercomputing Applications, University of Illi-
nois at Urbana-Champaign, 2004.

[Gro07] The HDF5 Group. HDF5 Online Tutorial. University of Illinois at
Urbana-Champaign, 2007. http://hdf.ncsa.uiuc.edu/HDF5/Tutor/
Accessed on May 15, 2007.

[Lan04] Mark Lancaster. Building programs: Compiling, linking, running,
presentation slides. Technical report, May 2004.

[Pou02] Elena Pourmal. FITSIO, HDF4, NetCDF, PDB and HDF5 perfor-
mance, some benchmarks results. Science Data Processing Workshop,
February 2002.

[RD90] Russ Rew and Glenn Davis. NetCDF: an interface for scientific data
access. Computer Graphics and Applications, IEEE, 10(4):76–82, 1990.

[SHS07] Jürgen Schnack, Peter Hage, and Heinz-Jürgen Schmidt. Optimized
implementation of the Lanczos method for magnetic systems. Journal
of Computational Physics, 2007.

[Smi95] Ian Moffat Smith. Programming in Fortran 90: A First Course for Engi-
neers and Scientists. John Wiley & sons, April 1995.

[SS95] Kurt L. Shlager and John B. Schneider. A survey of the Finite-
Difference Time-Domain literature. Antennas and Propagation Mag-
azine, IEEE, 37(4):39–57, 1995.

[Thi06] Arnaud Thiry. Efficient FDTD for Broadband Systems. PhD thesis, Uni-
versity of Manchester, School of Computer Science, Kilburn Build-
ing, Manchester M13 9PL, United Kingdom, May 2006.

BIBLIOGRAPHY 123

[VAN99] Scott Vetter, Yukiya Aoyama, and Jun Nakano. RS/6000 SP: Practical
MPI Programming. IBM International Technical Support Organiza-
tion, August 1999.

[Yee66] Kane S. Yee. Numerical solution of initial boundary value prob-
lems involving Maxwell’s equations in isotropic media. Antennas
and Propagation, IEEE Transactions on [legacy, pre-1988], 14(3):302–307,
1966.

[Zha07] Yongwei Zhang. Phased array antenna element design, presentation
slides. Technical report, School of Electrical and Electronic Engineer-
ing, University of Manchester, 2007.

	Introduction
	Project Scope
	Project Structure
	Ultra Wide Band (UWB)
	Definition
	Application of UWB

	Summary

	Numerical Methods
	Maxwell's Equations
	Important Numerical Properties
	Finite Difference Time Domain (FDTD)
	Description
	Mathematical Fundamentals

	Frequency Dependent -- Finite Difference Time Domain (FD-FDTD)
	Description
	Mathematical Fundamentals

	Summary

	Problem Statement
	In-House Software Analysis
	Structure and Character of Produced Data
	Data Post-Processing Tasks
	Plot Production
	Visualisation Production
	Timing Results

	Summary

	Scientific Data Processing
	Current Situation
	Data Formats
	Network Common Data Form (NetCDF)
	Hierarchical Data Format 5 (HDF5)
	Alternatives

	Format Performance
	Format Choice
	Summary

	Development of Post-Processing Utilities
	Output File Structure in HDF5
	Modification of Existing Software
	Possible Parallelisation Approaches
	Case I -- Plotting Entire Data Domain
	Case II -- Plotting Data Subdomain

	New Plot Production
	Design
	Implementation
	Drawbacks
	Jumping Approach
	Parallelisation

	New Visualisation Production
	Improvement of Sequential Version
	Parallelisation

	Summary

	Experiments on High Performance Computing Systems
	Horace
	Architecture
	Current Experience
	Drawbacks
	Potential Performance

	IBM BlueGene/L
	Architecture
	Current Experience
	Drawbacks
	Potential Performance

	Summary

	Future Work
	Project Improvement
	Conclusion

	Appendix A -- Program Files
	Appendix B -- Software Installation
	SZip
	HDF5

	Appendix C -- Job Management Commands
	Horace
	IBM BlueGene/L

	Appendix D -- Source Code
	Modified FD-FDTD Simulation Program fdtd-mpi.F90, Data Output Part
	New Point Plotting Utility plotPoints.F90
	Original Plane Visualisation Utility visualisePlane.csh
	Compilation Script for Parallel HDF5 Programs h5compile.sh

