Simulation of EM-Wave Propagation from an Antenna Element

Maksims Abalenkovs Luis Cebamanos Dr Fumie Costen

School of Electrical and Electronic Engineering University of Manchester

MANSKADS-3 Manchester, United Kingdom

M. Abalenkovs et al. (Manchester)

Simulation of EM-Wave Propagation

January 25, 2007 1 / 14

4 3 5 4 3

M. Abalenkovs et al. (Manchester)

Simulation of EM-Wave Propagation

Image: A matrix and a matrix

SKADS Context

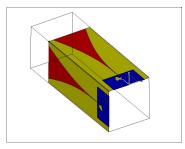
- SKADS Position: 2-PAD
- SKADS Activity:
 - numerical simulation of EM-wave propagation
 - various UWB antenna elements (geometric shape and material)
 - ► excitation source → antennas
- COTS \rightarrow commercial software (MATLAB, CST Studio ++):
 - not enough precision, small-scale (up to 4 elements)
 - little parallelisation capabilities \rightarrow in-house software
 - might be competitive in 5 years

< 回 > < 三 > < 三 >

Working procedure

- Strong coupling:
 - David Zhang \rightarrow element geometry, shape
 - ► Ahmed EI-Makadema → array geometry, placement
- Input: shape + placement
- pattern of EM-field distribution and coupling
- new shape + new placement

o . . .

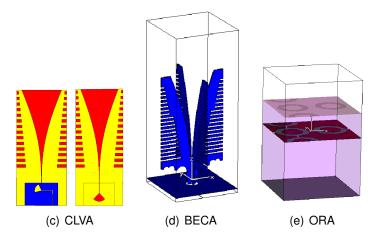

不得る 不良る 不良る

Antenna Element Design

Vivaldi Antenna – antenna best suited for transmission of broad spectrum signals.

Validation of a new antenna:

• Analysis of radiation pattern around the antenna


(a) Vivaldi Antenna Scheme

(b) Vivaldi Antenna Array

4 **A b b b b b b**

Perspective Antenna Designs

- Comb-Line Vivaldi Antenna (CLVA)
- Bunny Ear Comb-Line Antenna (BECA)
- Octagon Rings Antenna (ORA)

Finite Difference Time Domain (FDTD)

Kane S. Yee, 1966, FDTD classical approach:

- Initial EM-field values
 - Maxwell's Equations (ME)
 - system of hyperbolic PDE
 - unique solution
- Second order finite centred approximation to derivatives in ME
- Explicit algorithm
 - current values = function of previous values in time
- Simulation
 - ► CPU, memory, I/O-intensive

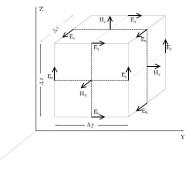


Figure: Yee Unit Cell

Frequency Dependent – FDTD (FD-FDTD)

- Reflects medium and material properties
- Permittivity *ε* and conductivity *σ* are frequency dependent

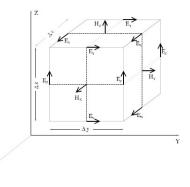


Figure: Yee Unit Cell

х

Method Implementation

- Set antenna geometry and material for the FD-FDTD calculation
- FD-FDTD simulation software \rightarrow Fortran, MPI
 - ► Workload division → z-axis
 - ► Data output → textual ASCII and binary formats
- Real-world simulation:
 - $\blacktriangleright\,$ 5000 time steps \times 16 CPUs $\times\,$ 250 MB data files \approx 19.07 TB
 - Single file production time: 3-58 min
- Data post-processing → shell scripts, Fortran, MPI
 - Point plotting
 - Plane visualisation
- CPU frequency and RAM size are vital
- \bullet Conclusion \rightarrow optimisation of data production and post-processing

3

Produced Data: Structure and Character

One file for each time step for each processor, e.g. 100 time steps \times 2 processors = 200 files

- File:
 - Name: <timestep>_<rank>.<format>
 - Structure:

Spatial Coordinates			Field Values		
X	У	Ζ	E_x	•••	Hz
1	1	96	-0.15396E+10	•••	-0.15041E+12
÷					:
189	467	100	0.13878E+08	•••	0.13895E+10

< 回 > < 三 > < 三 >

Achievements

- Achievements up to date:
 - simulation of specific pre-defined antenna shape
 - * normal Vivaldi antenna design, specified by David, 1 element
 - developing the functionality for automatic radio environment setting
 - antenna shape recognition
 - improving the simulation efficiency (load-balancing)
 - $\star\,$ non-dedicated I/O-server \rightarrow data collection and output

4 **A** N A **B** N A **B** N

Current Research Activities

- improving the efficiency of data post-processing
- near- to far-field conversion
- development of subgridding technique for the EM-wave propagation problem

The Sec. 74

A b

SKA Comparison

- international SKA R&D:
 - ASTRON, simulation package
- Approaches for data storage
 - text, binary, scientific format, database
- SKA-ready performance
 - 1 element vs 8×8 element array
- Further challenges:
 - Computation and I/O speed-up
 - * subgridding techniques, parallelisation, binary format
 - Data analysis speed-up
 - smarter and faster post-processing tools
- Publication
 - one conference paper submitted (HDF5)
 - journal and conference papers on subgridding expected

3

周レイモレイモレ

Discussion

- Questions
- Answers

2

イロト イヨト イヨト イヨト