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Abstract

Computer simulation of electromagnetic behaviour of a device is a common prac-

tice in modern engineering. Maxwell’s equations are solved on a computer with

help of numerical methods. Contemporary devices constantly grow in size and

complexity. Therefore, new numerical methods should be highly efficient. Many

industrial and research applications of numerical methods need to account for the

frequency dependent materials.

The Finite-Difference Time-Domain (FDTD) method is one of the most widely

adopted algorithms for the numerical solution of Maxwell’s equations. A major

drawback of the FDTD method is the interdependence of the spatial and tempo-

ral discretisation steps, known as the Courant–Friedrichs–Lewy (CFL) stability cri-

terion. Due to the CFL condition the simulation of a large object with delicate geo-

metry will require a high spatio-temporal resolution everywhere in the FDTD grid.

Application of subgridding increases the efficiency of the FDTD method. Sub-

gridding decomposes the simulation domain into several subdomains with diffe-

rent spatio-temporal resolutions.

The research project described in this dissertation uses the Huygens Subgrid-

ding (HSG) method. The frequency dependence is included with the Auxiliary Dif-

ferential Equation (ADE) approach based on the one-pole Debye relaxation model.

The main contributions of this work are (i) extension of the one-dimensional (1D)

frequency-dependent HSG method to three dimensions (3D), (ii) implementation

of the frequency-dependent HSG method, termed the dispersive HSG, in Fortran 90,

(iii) implementation of the radio environment setting from the PGM-files, (iv) simu-

lation of the electromagnetic wave propagating from the defibrillator through the

human torso and (v) analysis of the computational requirements of the dispersive

HSG program.
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Chapter 1

Introduction

This chapter gives a brief introduction to the project described in the dissertation. It

covers the motivation, problems and possible solutions to the specified problems.

This chapter highlights the major and minor research aims. The last section de-

scribes the organisation of the dissertation in a chapter-by-chapter manner.

1.1 Motivation

Modern devices become increasingly complex. Prior to developing a physical pro-

totype of a device, it is usually simulated on a computer with help of numerical

methods. The efficient and accurate simulation of electromagnetic behaviour of

these devices becomes an important research issue. Another vital topic in industry

and academia is the ability to simulate the frequency dependent materials, mate-

rials that change their electromagnetic properties depending on the propagating

wave frequency. A human body presents an excellent example of a collection of

frequency dependent materials. Each human tissue changes its electromagnetic

parameters depending on the illuminating wave frequency.

1.2 Problems

The Finite-Difference Time-Domain (FDTD) method is one of the most widely used

techniques for the simulation of electromagnetic wave propagation. However, one

limitation of the FDTD method is the interdependence of the spatial and temporal

discretisation steps, known as the Courant–Friedrichs–Lewy (CFL) stability crite-

rion. Therefore, high spatio-temporal resolution is required by the FDTD approach
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in order to simulate an object with fine geometric features. But the high spatio-tem-

poral resolution results in considerable use of computational resources and long

execution times.

1.3 Solutions

Subgridding offers a way to increase the FDTD method efficiency. With a subgrid-

ding approach the simulation domain is decomposed into a number of subdomains

with different spatio-temporal resolution. The main grid with coarse resolution

contains the homogeneous object parts and the subgrid with fine resolution mod-

els the delicate features of an object. The CFL condition is maintained separately

in each grid. Huygens Subgridding (HSG) applied in this work is a very promising

subgridding technique operating by means of equivalent currents flowing from the

main-to-sub and the sub-to-main grid at each FDTD time step.

1.4 Aims

The main aim of this work is extension of the one-dimensional (1D) frequency-

dependent Huygens Subgridding method to three dimensions (3D). In the follow-

ing dissertation the Frequency-Dependent Finite-Difference Time-Domain method

with Huygens Subgridding developed during this project will be called a dispersive

HSG method. Minor aims achieved within this project were (i) the development of

radio environment setting from the digital human phantom data, (ii) proposal of an

application framework for the dispersive HSG method to optimise defibrillators and

(iii) testing of the CPU time and memory requirements of the dispersive HSG with

the subgridding ratio of 5.

1.5 Organisation

This dissertation is organised in the following manner:

Chapter 2 introduces the most prominent Computational Electromagnetics (CEM)

methods, provides the mathematical formulations of the classical FDTD and FD–

FDTD methods in three dimensions (3D) and discusses the important properties of

numerical algorithms.
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Chapter 3 describes the key aspects of a subgridding algorithm and gives an in-

depth review of modern subgridding techniques.

Chapter 4 is dedicated to the description of the HSG method. After a short intro-

duction of the main principles the concept of the Total-Field/Scattered-Field tech-

nique is explained in Section 4.3. Section 4.4 follows with the discussion of equiva-

lent currents on the Huygens Surfaces (HS). The HSG algorithm and the mathemat-

ical formulation are presented in detail in Sections 4.5 and 4.7. Section 4.6 briefly

addresses the issue of native HSG instability.

Inclusion of the frequency dependency into the classical HSG method is ex-

plained in Chapter 5. Chapter 5 describes the changes necessary to the standard

HSG algorithm in order to include the frequency dependency and provides the math-

ematical equations for the dispersive HSG formulation.

Chapter 6 reports on the numerical results obtained with the dispersive HSG im-

plementation. Seven testing scenarios track the HSG behaviour in various environ-

ment settings. One scenario is dedicated to the observation of the HSG instability.

Scenario human torso provides an example of wave propagation excited by two de-

fibrillator pads and travelling inside the human torso. Chapter 6 also analyses the

computational requirements of the dispersive HSG program.

Chapter 7 concludes this dissertation and Chapter 8 gives prospects for the fu-

ture work.

Simulation of the wave propagation from the defibrillator through the human

torso is a possible application of the dispersive HSG approach developed in this

work. To better understand the specifics of this application case Appendix A ex-

plains the basics of cardiography and the defibrillation process. A special attention

is paid to the numerical simulation of defibrillation.



Chapter 2

Computational Electromagnetics

Methods

This chapter provides a brief overview of the Computational Electromagnetics (CEM)

methods and introduces the important properties of numerical algorithms. Ma-

jor sections of this work are dedicated to the formulations of the Finite-Difference

Time-Domain (FDTD) and the Frequency-Dependent Finite-Difference Time-Do-

main (FD–FDTD) methods. Sections 2.3 and 2.4 give detailed theoretical explana-

tions and mathematical equation derivations of both methods. Section 2.4.4 out-

lines the frequency dispersion models and presents the Auxiliary Differential Equa-

tion approach. Finally, Section 2.4.6 presents the implementation of the FD–FDTD

method in a programming language.

2.1 Overview of

Computational Electromagnetics Methods

Tables 2.1 and 2.2 adopted from [1] provide an introductory comparison of the ma-

jor CEM methods widely used in academia and industry. The computational meth-

ods are evaluated along their common functionality as widely implemented and

understood by the CEM community. No exceptional cases are covered by the data

in Tables 2.1 and 2.2. Table 2.1 lists key performance features of the Method of

Moments (MoM), the Finite Element Method (FEM) and the FDTD method for the

open radiation and scattering problems. Radiation condition in Table 2.1 imple-

ments correct behaviour of the field far from the source, e.g. in free space the field
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strength is inversely proportional to the distance [1]. Columns PEC only, Homoge-

neous Penetrable and Inhomogeneous Penetrable in Tables 2.1 and 2.2 compare the

CEM methods suitability for solution of certain problems: perfectly or highly con-

ducting materials versus homogeneous or inhomogeneous penetrable structures,

e.g. dielectrics or human body. Table 2.2 lists the methods applicability for the so-

lution of guided wave problems.

Method Eq. Form Calculation Radiation PEC Hom. Inhom.
Domain Condition only Penetr. Penetr.

MoM integral frequency yes + + −
FEM differential frequency no − + +
FDTD differential time no − + +

Table 2.1: Computational electromagnetics methods for open region problems [1].
Symbols “+” and “−” signify good and not optimal methods performance. Abbre-
viations “Hom. Penetr.” and “Inhom. Penetr.” stand for homogeneous penetrable
and inhomogeneous penetrable problems.

Method Eq. Form Calculation Wideband PEC Hom. Inhom.
Domain only Penetr. Penetr.

MoM integral frequency ≈ + + −
FEM differential frequency ≈ + + +
FDTD differential time + + + +

Table 2.2: Computational electromagnetics methods for guided wave problems [1].
Symbols “+”, “≈” and “−” denote good, satisfactory and not optimal methods per-
formance.

2.1.1 Method of Moments

The MoM is most widely applied in the Radio Frequency (RF) CEM, especially in

the area of antenna engineering [1]. In MoM the radiating or scattering structure

is represented by a collection of equivalent currents, that are usually surface cur-

rents. Surface currents are discretised in wire segments in 1D or surface patches

in 2D. Then a matrix equation, that represents the effect of every segment/patch

onto every segment/patch, is derived. The inter-segment interaction is calculated

by means of a problem-specific Green’s function, e.g. free-space Green’s function.
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After the application of the relevant boundary condition, a system of linear equa-

tions is obtained. Solution of the linear equations system approximates the surface

current value in each segment or patch. The resulting matrix, fully populated with

complex valued entries, is factored or used in an iterative solver. Traditionally, MoM

is formulated in the frequency domain. Commercial packages implementing the

MoM include: FEKO [2], SuperNEC [3], IE3D [4] and GEMACS [5].

Strong Points

• MoM performs an efficient treatment of perfectly or highly conducting sur-

faces, whereas only the surface has to be meshed, no meshing of the wrapping

“air region” is required.

• By design the MoM incorporates the correct behaviour of the field far from the

source (also known as the radiating condition).

• Current density is a key operating variable, which enables straightforward deriva-

tion of other important antenna parameters.

• MoM allows to produce efficient formulations for the layered media, e.g. printed

antennas, components and feed networks.

Weak Points

• MoM does not handle inhomogeneous materials as well as the other CEM

methods formulated with differential equations.

• MoM does not scale well with frequency, where the scaling is O
(
(kd)6

)
with

kd denoting the size of a cubic grid structure.

• Some MoM formulations, e.g. based of magnetic field integral equation (MFIE),

require the surface to be closed, which is usually impractical.

Summary

The MoM is recommended for the solution of radiating or scattering problems in

frequency domain. The method handles perfectly or highly conducting wires and

surfaces especially well.
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2.1.2 Finite-Difference Time-Domain Method

The FDTD method is based on approximations of partial differential equations and

does not require tailored Green’s functions as the MoM [1]. The method solves

Maxwell’s equations directly on a grid staggered in time and in space. The electric

and magnetic fieldsE,H are calculated with a marching-on-in-time algorithm on

a regular grid. The FDTD is one of the most widely used schemes in time domain.

The FDTD method can be either “explicit” or “implicit”. In explicit FDTD method no

simultaneous equations are set up and solved. The electromagnetic (EM) field va-

lues at the next time-step depend on the current and previous time-step values only.

Explicit FDTD method is only conditionally stable (for details refer to Section 2.2.2).

CST Microwave Studio®1 [6] and Remcom XFDTD [7] are the commercial packages

offering the FDTD method’s implementation.

In implicit FDTD schemes (such as the Alternating-Direction Implicit–Finite-

Difference Time-Domain [8] and Crank-Nicolson–Finite-Difference Time-Domain

[9]) a set of simultaneous equations is used to calculate the unknowns. From a

physics perspective the next time-step value depends on the previous, current and

next time-step values of some or all points in the simulation domain [1].

Strong Points

• The FDTD method has an exceptionally simple formulation for a full-wave

solver.

• The algorithm offers a straightforward treatment of material inhomogeneities.

• It has a fairly accurate geometric modelling ability, but less versatile than FEM’s.

• Wideband solution is available after only one time domain run.

• The method offers a reasonable scaling behaviour in the order of O
(
(kd)5.5

)
.

• Very good Absorbing Boundary Condition (ABC) is offered by the Perfectly

Matched Layer (PML) and its variations.

1CST Microwave Studio® is based on a more general Finite Integration Technique (FIT), which

under certain conditions reduces to FDTD.
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Weak Points

• Meshing is inflexible and can introduce “staircase” approximation errors.

• There is an uncertainty about the precise position of ABC, due to half space-

step offsets between EM-fields.

• Implementation of dispersive materials requires considerable effort and com-

plicates the initial algorithm.

• The method is less efficient than the MoM for modelling perfectly or highly

conducting radiators or scatterers.

• Implementation of higher-order approaches is difficult, partially due to am-

biguity of the exact ABC locations.

Summary

The FDTD scheme should be the method of choice for the solution of wideband

systems. The algorithm is particularly useful, when quick solutions of any EM-ra-

diation or scattering problems are required. The FDTD method can produce very

accurate results, if sufficiently high spatio-temporal resolution is used.

2.1.3 Finite Element Method

The FEM usually formulated in frequency domain easily handles inhomogeneous

materials and complex geometries [1]. Two major viewpoints for the derivation of

the FEM include (i) variational analysis and (ii) weighted residuals.2 Unknown field

in the FEM is discretised with the mesh of finite elements: triangular elements in

2D and tetrahedrons in 3D. Triangles and tetrahedrons are the simplest forms to

mesh the 2D and 3D regions. The Finite Element Analysis (FEA)3 is aimed for eige-

nanalysis and deterministic analysis—source-free and driven types of problems re-

spectively. The FEM has no radiating condition and requires an artificial absorbing

region within the mesh or a hybridisation with the MoM to terminate the grid. Com-

mercial distributions of the FEM are offered by Ansoft’s HFSS [11] and COMSOL’s

Multiphysics® [12].

2A residual, also called an error, is a factor introduced into the Laplace equation [10].
3Finite Element Analysis (FEA) is a practical application of the Finite Element Method (FEM).
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Strong Points

• The algorithm offers straightforward treatment of complex geometries and

material inhomogeneities.

• FEM allows simple handling of dispersive materials and eigenvalue problems.

• Scales better in frequency than the MoM. Realistic scaling behaviour lays in

between O
(
(kd)5

)
and O

(
(kd)6

)
. It is problem-dependent and reflects the

matrix sparsity pattern.

• Higher-order basis functions can be easily integrated into the core method.

• Curved geometries can be approximated with the use of conformal elements.

• The method’s popularity and maturity in other fields of engineering gave rise

to “multi-physics” solutions intertwining Maxwell’s equations with the ther-

mal or mechanics phenomena.

Weak Points

• The need for an additional “air region” between the radiator and the absorber

results in FEM inferiority compared to the MoM in solving highly conductive

radiation problems.

• Mesh generation for the FEM can become a very complex and time consum-

ing process.

• The FEM implementation is more complicated than that of the FDTD, which

also results in cumbersome parallelisation.

• Solutions involving higher-order elements require efficient preconditioned it-

erative solvers.

Summary

The FEM is better suited for the microwave device simulation and eigenvalue calcu-

lation. Hybrid FEM/MoM are preferred for the scattering problems simulation, that

also involve dispersive media. The FEM can be efficiently applied for the specialised

antenna problems.
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2.1.4 Other Methods

Other less popular CEM methods include:

Transmission Line Matrix (TLM) method, that resembles the FDTD and discretises

an array of short transmission lines equivalent to the original Maxwell’s equa-

tions. Continuing research of the TLM is stipulated by the method’s better

suitability (compared with the FDTD) for the simulation of high-frequency

circuits. Commercial package is offered by CST MICROSTRIPES™ [13].

Method of Lines (MoL) approximates Maxwell’s equations by using semi-analyti-

cal solutions along a number of lines. The MoL is targeted for the accurate

and memory-efficient simulation of wave guiding structures. No commercial

product implementing the MoL is known of.

Generalised Multipole Technique (GMT) applies multipoles, special function-so-

lutions of Maxwell’s equations, as basis functions. Careful selection of initial

multipole positions is expected from the user. Multipoles are arbitrary func-

tions that exhibit most useful local behaviour. Local behaviour is the function

property such that the corresponding field is concentrated around the multi-

pole origin and turns into a singularity at the origin.

2.2 Numerical Algorithm Properties

2.2.1 Numerical Dispersion

Numerical dispersion is an undesirable non-physical characteristic of the FDTD

method, when EM-waves propagate with different speeds along different directions.

In a dispersive medium the propagation velocities of EM-wave vary with fre-

quency. In a non-dispersive medium, e.g. free-space, angular frequency ω and

wavenumbers kx , ky , kz relate as:

(ω
c

)2
= k2

x +k2
y +k2

z , (2.1)

where kx , ky , kz are propagation constants in x, y, z coordinate directions, and c is

the speed of light in vacuum.

But even in a non-dispersive medium in the FDTD grid EM-waves travel with

different speeds along different propagation directions. Numerical dispersion error
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influencing the final result depends on the FDTD cell size and shape, as well as the

finite-difference format used for discretisation of Maxwell’s equations [14].

Equation (2.1) in 1D for a continuous case reduces to:

(ω
c

)2
= k2

x . (2.2)

The phase velocity is defined as:

νp = ω

kx
. (2.3)

Phase velocity determines the phase propagation speed of each frequency com-

ponent in the given wave.

Wavelength and temporal period of a continuous case solution are:

λ0 = cT, T = 2π

ω
. (2.4)

In a discretised case a new notion of the spatial grid wavelength is defined as:

λg = 2π

kx
. (2.5)

Phase velocity and spatial grid wavelength are the two important measures of

numerical dispersion, that are related as:

νp

c
= λg

λ0
. (2.6)

To analyse numerical dispersion of the FDTD algorithm in Cartesian coordinates

consider the plane wave function represented as:

P (x, y, z, t ) = P0 exp
[

(
ωt −kx x −ky y −kz z

)]
(2.7)

with ω = 2π fw . In (2.7) x, y, z, t stand for spatial and temporal coordinates,  is an

imaginary unit, and fw is a wave frequency. Using spatial and temporal increments

∆x,∆y,∆z and ∆t (2.7) can be rewritten as:

P n (
i , j , k

)= P0 exp
[

(
ωn∆t −kx i∆x −ky j∆y −kzk∆z

)]
, (2.8)

where n, i , j , k are integer indices in time and space.
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In free-space EM-wave satisfies the wave equation:(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− 1

c2

∂2

∂t 2

)
P = 0. (2.9)

After discretising (2.9) with central-difference approximations in time and space

it will turn into:

P n
(
i +1, j , k

)−2P n
(
i , j , k

)+P n
(
i −1, j , k

)
∆x2

(2.10)

+ P n
(
i , j +1, k

)−2P n
(
i , j , k

)+P n
(
i , j −1, k

)
∆y2

+ P n
(
i , j , k +1

)−2P n
(
i , j , k

)+P n
(
i , j , k −1

)
∆z2

= P n+1
(
i , j , k

)−2P n
(
i , j , k

)+P n−1
(
i , j , k

)
c2∆t 2

.

The numerical dispersion relation is obtained by substituting discretised form

of the plane wave function (2.8) into discretised form of the wave equation (2.10):

[
1

c∆t
sin

(
ω∆t

2

)]2

=

[
1

∆x
sin

(
kx∆x

2

)]2

+
[

1

∆y
sin

(
ky∆y

2

)]2

+
[

1

∆z
sin

(
kz∆y

2

)]2

. (2.11)

Numerical dispersion relation (2.11) reduces to (2.1) as ∆x,∆y,∆z → 0. Hence,

numerical dispersion error decreases with the decrease of the FDTD cell size.

Consider an example from [14] presented in Figure 2.1 to verify that numeri-

cal dispersion is different along different propagation directions. Figure 2.1 shows

the wave propagation in free-space in 2D modelled with the uniform FDTD mesh

with ∆x = ∆y and a line source oriented along the z-direction. First observation is

that the numerical dispersion error is considerably smaller along the diagonals at

ϕ = 45◦, 135◦, 225◦ and 315◦. The dependency of phase velocity on the angle of pro-

pagation through the mesh is called grid anisotropy [15]. Grid anisotropy errors are
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usually smaller than errors due to simple numerical dispersion. Second observa-

tion is that the numerical dispersion error decreases with the decrease of the spatial

increment ∆x (refer to Figures 2.1a to 2.1c), that follows from the numerical disper-

sion relation given by (2.11).

(a) ∆x =∆y = λ

5
(b) ∆x =∆y = λ

10
(c) ∆x =∆y = λ

20

Figure 2.1: Numerical dispersion error [14]. Wave propagation in free-space in 2D
from a line source oriented along z-direction. Ez field distribution in the x y-plane.
White circle marks the ideal wave front without any numerical dispersion. Symbol
λ denotes the numerical wavelength of the propagating wave.

2.2.2 Numerical Stability

Numerical instability is an undesirable property of the explicit differential equations

solvers to spuriously increase computation results without limit. Stability of the

FDTD technique depends on the nature of the physical model, differencing tech-

nique and the quality of the mesh structure [14].

There are two main approaches to analyse numerical stability: (i) the spectral

technique of von Neumann and (ii) the complex-frequency analysis of the numeri-

cal dispersion relation [16].

These approaches account for two different instability sources of a numerical

technique: the spectral (von Neumann) and the causal (Courant). The von Neu-

mann’s method deals with the instability arising from the inconsistency between

the linear initial-value problem and the linear finite-difference approximation. Lax’s

equivalence theorem defines the concept of stability analysed by the von Neumann’s

method. The Lax’s theorem states that stability is the necessary and sufficient con-

dition for convergence, if the linear initial-value problem and the linear finite-dif-

ference approximation are consistent and well-posed4 [1, 19]. On the other hand

4A well-posed problem according to Jacques Hadamard [17] is the problem for which (i) a solution



2.2. NUMERICAL ALGORITHM PROPERTIES 35

the Courant criterion analyses, whether a numerical model represents a physical

problem sufficiently well.

Next sections provide a brief introduction into the essence of the von Neumann’s

method and explain the nature and the derivation of the Courant stability criterion.

Stability by the Fourier Series Method (von Neumann’s Method)

Stability of a linear two time-level difference equation u(x, t ) specified in time in-

terval 0 ≤ t ≤ T = Jk, where T is finite and δx = h → 0, δt = k → 0, J →∞ can be

analysed with the Fourier series method [20].

First, the initial values at mesh points along t = 0 are expressed in terms of a

finite Fourier series. Second, the growth of a function, that reduces to this Fourier

series, is examined for t = 0 using the method of separation of variables [19].

It is beneficial to express the Fourier series in terms of the complex exponential

form in place of the sines and cosines:

∑
an cos(nπx/l ) or

∑
bn sin(nπx/l ) −→

∑
Ane i nπx/l , (2.12)

where i =
p
−1 and l is an x-interval where the function is defined. It is also helpful

to alter the conventional notation of ui , j to u
(
ph, qk

)= up,q .

Using the given notation terms of the Fourier series become:

Ane i nπx/l = Ane i nπph/N h = Ane iβn ph , (2.13)

where βn = nπ/N h and N h = l .

The initial values of the pivotal points along t = 0 can be defined with u
(
ph,0

)=
up,0, p = 0(1)N . The N +1 equations are obtained in the following manner:

up,0 =
N∑

n=0
Ane iβn ph , p = 0,1, · · · , N . (2.14)

The N +1 equations are sufficient to determine the N +1 unknowns A0, A1, · · · , An .

Hence, the initial mesh values can be expressed in the complex exponential form .

The Fourier series method deals with the linear-difference equations, therefore

exists, (ii) the solution is unique and (iii) the solution depends continuously on the initial and/or

boundary conditions [1, 18].
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the propagation of only one initial value e iβph should be investigated, since the sep-

arate solutions are additive. Coefficient An is constant and can be neglected.

Propagation of the given term is investigated as the time t grows:

up,q = e iβxeαt = e iβpheαqk = e iβphξq , (2.15)

where ξ= eαk , α is a complex constant and ξ is an amplification factor.

Finite-difference equations are Lax–Richtmyer stable [21], if |up,q | is bounded

for all q ≤ J as h → 0 and k → 0 for all values of β necessary to satisfy the initial

conditions.

If exact solution of the difference equations doesn’t grow exponentially with time

t , the necessary and sufficient condition for stability is:

|ξ| ≤ 1, i.e. −1 ≤ ξ≤ 1. (2.16)

Else (up,q increases exponentially with time), the necessary and sufficient con-

dition for stability is:

|ξ| ≤ 1+K k = 1+O (k) , (2.17)

where K is a positive number independent of h,k,β. Example applications of the

Fourier series method can be found in [19]. Books of O’Brien et al [20] and Richt-

myer and Morton [22] give a detailed explanation of the Fourier series approach.

Complex-Frequency Analysis Approach

Following the complex-frequency analysis approach the numerical dispersion rela-

tion (2.11) is solved for the angular frequency ω:

ω= 2

∆t
sin−1

(
ν∆t

√
1

∆x2
sin2

(
kx∆x

2

)
+ 1

∆y2
sin2

(
ky∆y

2

)
+ 1

∆z2
sin2

(
kz∆y

2

))
.

(2.18)

To consider a more general case the speed of light in vacuum c in (2.18) was

changed to the speed of wave propagation in a given medium ν:

ν= 1p
εµ

, (2.19)

where ε, µ are electric permittivity and magnetic permeability of the medium.
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According to the plane wave function relation (2.7), when ω is an imaginary

number, the EM-waves will either (i) attenuate rapidly to zero, or (ii) grow exponen-

tially and diverge. This wave behaviour depends on whether the imaginary part of

ω is a positive or a negative term. In (2.11) the angular frequency ω is a real number

when

∣∣∣∣sin

(
ω∆t

2

)∣∣∣∣≤ 1. (2.20)

Therefore, the argument of sin−1, expression in the round brackets of (2.18), must

satisfy the following condition:

ν∆t

√
1

∆x2
sin2

(
kx∆x

2

)
+ 1

∆y2
sin2

(
ky∆y

2

)
+ 1

∆z2
sin2

(
kz∆y

2

)
≤ 1. (2.21)

Note that in (2.21) the maximum possible value of a sine-squared term under

the square root is 1. Then to obtain a stable FDTD solution the time-step ∆t must

obey:

∆t ≤ 1

ν

√
1

∆x2
+ 1

∆y2
+ 1

∆z2

. (2.22)

Equation (2.22) is called the Courant-Friedrichs-Lewy (CFL) stability condition

or simply the Courant criterion. Courant criterion in (2.22) ensures that the time-

step ∆t is determined by spatial steps ∆x,∆y,∆z and the speed of wave propa-

gation in a given medium ν. When (2.22) is used as an equality, maximum time-

step value ∆tC F L is obtained. However, in practice the maximum time-step is used

rarely, because ∆tC F L at its theoretical limit might be error-prone. Usually the max-

imum time-step is scaled down by a factor of NC F L ∈ (0, 1], so that∆t = NC F L ·∆tC F L

and (2.22) for practical ∆t setting becomes:

∆t = NC F L
1

ν

√
1

∆x2
+ 1

∆y2
+ 1

∆z2

, (2.23)

where the scaling factor NC F L is called the Courant or the CFL number. Equa-

tions (2.24) and (2.25) specify the Courant criterion for 2D and 1D cases respectively:
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∆t ≤ 1

ν

√
1

∆x2
+ 1

∆y2

, (2.24)

∆t ≤ ∆x

ν
. (2.25)

It is interesting to note that the higher dimensional cases (2D and 3D) are more

restrictive in terms of the Courant criterion. This phenomenon is exemplified in Fi-

gure 2.2.

plane wave

∆x/
p

2

φ=π/4

∆x

∆x

Figure 2.2: Courant criterion in 2D [15]. Plane wave propagates along the diagonals
of the squared 2D FDTD mesh. Projections of lines with the constant phase result
in a wave propagation along the 1D effective mesh with the cell size of ∆x/

p
2. To

account for such propagation scenarios the Courant criterion in 2D (2.27) should be
more restrictive.

Examine (2.25) that defines the propagation time from nth to (n +1)th tempo-

ral FDTD node as ∆t = ∆x/ν. The case of ∆t > ∆x/ν violates the causality and the

FDTD method yields non-zero field value before reaching the (n+1)th node, which

results in instability. In case of free-space, the speed of light c bounds the transmis-

sion rate across the mesh [15].
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Figure 2.3 gives an example of the physical interpretation of the Courant crite-

rion. For a stable solution the physical domain should be a part of the numerical

domain. Consider the opposite case, when the physical domain contains the nu-

merical domain. Grid points necessary for a correct approximation of the physical

domain lie outside of the numerical domain. The lack of knowledge about the phys-

ical domain results in instability.

Solid lines bounding the numerical domain have the slopes of ∆t/∆z, while

dashed lines have the slopes of 1/ν, where ν is the velocity of wave propagation

on a line; ν= 1/
p

LC and L, C being the inductance and capacitance of an infinites-

imal piece of a lossless transmission line. Physical domain will constitute a part of

the numerical, when 1/u ≥∆t/∆z, which is the Courant criterion.

0.250.20.10.050 0.15

0.05

0.15

0.25

0.2

0.1

0

t

z

Figure 2.3: Physical interpretation of the Courant criterion [1]. Physical domain of
dependence is marked with the solid and numerical domain of dependence—with
the dashed lines.

When uniform 3D and 2D FDTD grids are used the inequalities (2.22) and (2.24)

reduce to:

∆t ≤ ∆x

ν
p

3
−→ ∆t ≤ 0.577

∆x

ν
, (2.26)
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∆t ≤ ∆x

ν
p

2
−→ ∆t ≤ 0.707

∆x

ν
. (2.27)

For several media with different values of ν, the overall Courant criterion re-

mains valid when the maximum value of ν is used.

For any Courant number NC F L > 1 the FDTD algorithm will have an exponen-

tially growing, rapidly oscillating sinusoidal numerical wave propagating within the

computation grid. This exponentially growing wave is the origin of numerical insta-

bility. The selection of spatio-temporal resolution of the FDTD method is a two-step

process. First, Electromagnetics expert selects a spatial increment ∆x. Spatial step

size mainly depends on the problem geometry and is chosen to adequately resolve a

given structure. Also the spatial increment size is influenced by the principal com-

ponents of the spectrum of signals propagating in the simulation space. Finally,

the temporal step ∆t is determined according to the CFL criterion for 1D, 2D or 3D

space.

2.3 Finite-Difference Time-Domain Method

2.3.1 Historic Background

Historically numerical methods were developed for military applications. Since the

World War II and during the Cold War numerical methods were used to improve the

microwave radar technology. In those times numerical methods solved Maxwell’s

equations in integral form in frequency domain. Approximately in the 1970s and

1980s direct time domain Maxwell’s equations solvers were developed. Direct time

domain methods solved Maxwell’s equations in differential form on spatial grids or

lattices.

The early 1990s saw an expanded interest for the FDTD method. Multiple rea-

sons served for the increased FDTD method popularity. Amongst them are such

FDTD method’s properties as no use of linear algebra, improved method’s accu-

racy and robustness, natural treatment of impulsive and nonlinear behaviour, me-

thod’s systematic approach to Maxwell’s equations solution (that mostly depends

on the structure’s geometry) and rapid expansion of computer memory capacities

and computer visualisation capabilities.

Since the 1990s there was a dramatic shift in the FDTD method’s usage. Modern

FDTD applications include global propagation of an Extremely Low Frequency (ELF)
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EM-pulse generated by a lightning strike, Specific Absorption Rate (SAR) calculation

generated by a mobile phone and absorbed by a human head, Ultrawide Band (UWB)

microwave detection of malignant tumours, microwave pulse interaction with a

missile radome, induced surface current calculation on the airplane surface, wire-

less digital interconnect design, photonic crystal microlaser operation and cross-

waveguide switch simulation.

After the algorithm development by Kane S. Yee in 1966 [23], the FDTD method

was continuously improved and adapted to different classes of problems. Develop-

ments important in the context of this work include the FDTD expansion for mod-

elling of frequency-dependent dielectric permittivity by Kashiwa and Fukai [24],

Luebbers et al. [25], and Joseph et al. [26] in 1990–1991, design of the Perfectly

Matched Layer (PML), highly effective Absorbing Boundary Conditions (ABC), by

Bérenger [27], PML extension to 3D by Katz et al. [28] in 1994 and the Convolutional

PML (CPML) by Roden and Gedney [29] in 2000.

2.3.2 Maxwell’s Equations in Three Dimensions

For a region of space without electric or magnetic currents and with EM-energy ab-

sorbing materials the time-dependent Maxwell’s equations in differential form are:

Faraday’s law:
∂B

∂t
=−∇×E−M . (2.28)

Ampère’s law:
∂D

∂t
= ∇×H −J . (2.29)

Gauss’ law for electric field:

∇ ·D = 0. (2.30)

Gauss’ law for magnetic field:

∇ ·B = 0. (2.31)

The following notation is used in the above formulation of the Maxwell’s equa-

tions:
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E electric field (V/m),

D electric flux density (C/m2),

H magnetic field (A/m),

B magnetic flux density (Wb/m2),

J electric current density (A/m2),

M equivalent magnetic current density (V/m2).

For linear (field-independent), isotropic (direction-independent) and non-dis-

persive (frequency-independent) materials the following constitutive relationships

are true:

D = εE = εrε0E, (2.32)

B =µH =µrµ0H . (2.33)

Notation used in (2.32) and (2.33) is:

ε electrical permittivity (F/m),

εr relative permittivity (−),

ε0 vacuum permittivity (8.854·10−12 F/m),

µ magnetic permeability (H/m),

µr relative permeability (−),

µ0 vacuum permeability (4π×10−7 H/m).

LetJ ,M act as independent electromagnetic field (EMF) energy sourcesJsr c ,Msr c

and allow materials with isotropic, non-dispersive electric and magnetic losses to

attenuate EMF energy via conversion to heat energy:

J =Jsr c +σE, (2.34)

M =Msr c +σ∗H . (2.35)

where
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σ electric conductivity (S/m),

σ∗ equivalent magnetic loss (Ω/m).

Now substitute (2.32) to (2.35) into (2.28) and (2.29) to obtain Maxwell’s curl

equations for linear, isotropic, non-dispersive and lossy materials:

∂H

∂t
=− 1

µ
∇×E− 1

µ

(
Msr c +σ∗H

)
, (2.36)

∂E

∂t
= 1

ε
∇×H − 1

ε
(Jsr c +σE) . (2.37)

Writing out vector components in Cartesian coordinates yields a system of six

equations that shape foundation of the FDTD method:

∂Hx

∂t
= 1

µ

[
∂Ey

∂z
− ∂Ez

∂y
− (

Msr c, x +σ∗Hx
)]

, (2.38)

∂Hy

∂t
= 1

µ

[
∂Ez

∂x
− ∂Ex

∂z
− (

Msr c, y +σ∗Hy
)]

, (2.39)

∂Hz

∂t
= 1

µ

[
∂Ex

∂y
− ∂Ey

∂x
− (

Msr c, z +σ∗Hz
)]

, (2.40)

∂Ex

∂t
= 1

ε

[
∂Hz

∂y
− ∂Hy

∂z
− (

Jsr c, x +σEx
)]

, (2.41)

∂Ey

∂t
= 1

ε

[
∂Hx

∂z
− ∂Hz

∂x
− (

Jsr c, y +σEy
)]

, (2.42)

∂Ez

∂t
= 1

ε

[
∂Hy

∂x
− ∂Hx

∂y
− (

Jsr c, z +σEz
)]

. (2.43)

2.3.3 Field Components Placement

Figure 2.4 presents the EMF components placement on the FDTD grid cell. A single

FDTD grid cell shown in Figure 2.4 is also known as the Yee unit cell. Yee positioned

the EMF components in such way, that every electric field (EF) component is sur-

rounded by four circulating magnetic field (MF) components and also every MF is

surrounded by four EF components. This components arrangement produces an
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interlinked array of Faraday’s and Ampère’s laws contours that adheres to the origi-

nal laws of Physics very well.

Hx Hx

Hx

HzHy

Hz Hz

Hy

Hy

Ey

Ex

Ez

z

y
x

(i, j, k)

Figure 2.4: Yee unit cell [16]. Electric and magnetic field components placement on
the FDTD grid cell. Red, green and blue arrows signify the x, y and z Cartesian co-
ordinate directions. Coordinate origin marked with the indices (i , j , k) is located in
the bottom left corner of the figure. Electric field components are placed in the mid-
dle of the cell faces, while magnetic field components are positioned in the middle
of the cell edges.

According to the original Yee plan theE andH field components are also cen-

tred in time domain. Figure 2.5 depicts the “leap-frog” EMF components place-

ment in time and Figure 2.6 illustrates the EMF components arrangement in space

and time. Half time-step shifted components ensure that the time-marching FDTD

algorithm is fully-explicit and requires no matrix inversion or simultaneous equa-

tions solution. Leap-frogging also makes the finite-difference expressions for time

derivatives central-difference in nature and second-order accurate. However, the

FDTD method is second-order accurate only on equidistant meshes, otherwise the

accuracy order lies in between of the numbers 1 and 2.

2.3.4 Benefits of FDTD

The FDTD method possesses a number of benefits. First, it solves Maxwell’s equa-

tions for both electric and magnetic fields in time and space using the coupled curl

equations. This provides a more robust solution than either alone. Application of
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E n−1 E n+1E n Hn+3/2Hn+1/2Hn−1/2

t

Figure 2.5: Leap-frog components placement in time [15]. Circles denote the elec-
tric and crosses the magnetic field components on a time axis t . Electric field calcu-
lation dependency is highlighted with red arrows and magnetic—with blue arrows.
Half time-step offset of 1/2 between the electric and the magnetic field components
makes the FDTD method explicit: electric field components at given time-step de-
pend only on previous time-step values of the electric and magnetic field values, e.g.
E n depends on E n−1 and H n−1/2. The same principle applies to the magnetic field
calculation, e.g. H n+1/2 depends on H n−1/2 and E n.

H H H

t = 0.5 t

x

E E E E

x x2 x3 x0

t = 0

Figure 2.6: Leap-frog components arrangement in space and time domains [16].
Bottom: electric field components are shown in 1D at spatial locations with x =
0,∆x, 2∆x, 3∆x and temporal location t = 0. Top: magnetic field components are
depicted in 1D at shifted spatial locations of x = 1

2∆x, 3
2∆x, 5

2∆x and shifted tempo-
ral location t = 1

2∆t .
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interdependent Maxwell’s equations also ensures the FDTD method is accurate for

wider classes of structures. Another benefit of the FDTD scheme is the possibility to

model unique electric or magnetic field features (E orH singularities) individually

when both fields are available. These unique field features include tangential H

singularities near edges and corners, azimuthal (looping)H singularities near thin

wires and radialE singularities near points, edges and thin wires [16].

Staggered component placement, when each EF component is surrounded by

four MF components and each MF component is surrounded by four EF compo-

nents, yields an interlinked array of Faraday’s law and Ampère’s law contours. There-

fore, the Yee algorithm simultaneously conforms to the pointwise differential and

the macroscopic integral forms of the Maxwell’s equations. Staggering of field com-

ponents allows to maintain the continuity of tangential electric and magnetic fields

naturally. For example, consider an interface of two different materials in the FDTD

grid. Given the interface is parallel to one of the coordinate axes the discontinuity

of tangential field components can be addressed by specifying the ε and µ at every

point of the grid. This leads to a “staircase” approximation of the interface, where

the quality of such approximation depends on the density of the FDTD mesh [16].

2.3.5 Yee Notation

Yee introduced a special notation for a single space point on a uniform rectangular

lattice:

(i , j , k) = (i∆x, j∆y, k∆z), (2.44)

where ∆x,∆y,∆z stand for the space increments in x, y, z coordinate directions,

and i , j , k are integer numbers. Yee has also proposed a way to denote a function u

of space and time:

u(i∆x, j∆y, k∆z, n∆t ) = un (
i , j , k

)
, (2.45)

with ∆t being a time increment and n an integer number.

2.3.6 Central-Difference Approximations

Important for the derivation of the FDTD method are the definitions of the centred

finite-difference (also called central-difference) approximations for space and time.

First partial space derivative of function u in x-direction evaluated at time tn = n∆t

is:
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∂u

∂x

(
i∆x, j∆y, k∆z, n∆t

)= un
(
i + 1

2 , j , k
)−un

(
i − 1

2 , j , k
)

∆x
+O

(
(∆x)2) . (2.46)

Notice the ±1
2 increment in x-coordinate (index i ) that implements the space

finite-difference over ±1
2∆x.

By analogy the time partial derivative of u is approximated with (2.47):

∂u

∂t

(
i∆x, j∆y, k∆z, n∆t

)= un+ 1
2
(
i , j , k

)−un− 1
2
(
i , j , k

)
∆t

+O
(
(∆t )2) . (2.47)

Here the ±1
2 increment in time coordinate (exponent n) denotes the time finite-

difference over ±1
2∆t .

Another important concept used in the FDTD method’s formulation is the semi-

implicit (also known as the central-average) approximation:

un (
i , j , k

)= un+ 1
2
(
i , j , k

)+un− 1
2
(
i , j , k

)
2

. (2.48)

Equation (2.48) means that any function u at the time moment of n can be de-

rived as an average of this function half time-step back and half time-step forward

in time.

2.3.7 Finite-Difference Formulation of Maxwell’s Equations

Electric Field Components

Refer to Figure 2.4 to find the electric field component Ex
(
i , j + 1

2 , k + 1
2

)
, that is lo-

cated at the front face of the Yee unit cell facing the reader. Take a note of the four

surrounding magnetic field components Hz
(
i , j , k + 1

2

)
, Hz

(
i , j +1, k + 1

2

)
, Hy

(
i , j + 1

2 , k
)

and Hy
(
i , j + 1

2 , k +1
)

. The finite-difference approximation of the scalar Maxwell’s

equations (2.41) for the E n
x

(
i , j + 1

2 , k + 1
2

)
component is:

E
n+ 1

2
x

(
i , j + 1

2 , k + 1
2

)−E
n− 1

2
x

(
i , j + 1

2 , k + 1
2

)
∆t

=
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1

ε
(
i , j + 1

2 , k + 1
2

) ·



H n
z

(
i , j +1, k + 1

2

)−H n
z

(
i , j , k + 1

2

)
∆y

−
H n

y

(
i , j + 1

2 , k +1
)−H n

y

(
i , j + 1

2 , k
)

∆z

−J n
sr c, x

(
i , j + 1

2 , k + 1
2

)−σ(
i , j + 1

2 , k + 1
2

)
E n

x

(
i , j + 1

2 , k + 1
2

)


.

(2.49)

It is necessary to apply the semi-implicit approximation of (2.48) to convert the

E n
x

(
i , j + 1

2 , k + 1
2

)
term to the half time-step locations. Equation (2.50) is obtained

after using the semi-implicit approximation and moving the ∆t to the right-hand

side:

E
n+ 1

2
x

(
i , j + 1

2 , k + 1
2

)−E
n− 1

2
x

(
i , j + 1

2 , k + 1
2

)=

∆t

ε
(
i , j + 1

2 , k + 1
2

) ·



H n
z

(
i , j +1, k + 1

2

)−H n
z

(
i , j , k + 1

2

)
∆y

−
H n

y

(
i , j + 1

2 , k +1
)−H n

y

(
i , j + 1

2 , k
)

∆z

−J n
sr c, x

(
i , j + 1

2 , k + 1
2

)

−σ(
i , j + 1

2 , k + 1
2

)
·

(
E

n+ 1
2

x
(
i , j + 1

2 , k + 1
2

)+E
n− 1

2
x

(
i , j + 1

2 , k + 1
2

)
2

)



.

(2.50)

Collecting E
n+ 1

2
x

(
i , j + 1

2 , k + 1
2

)
on the left-hand side yields (2.51):

(
1+

σ
(
i , j + 1

2 , k + 1
2

)
∆t

2ε
(
i , j + 1

2 , k + 1
2

) )
E

n+ 1
2

x
(
i , j + 1

2 , k + 1
2

)=
(

1−
σ

(
i , j + 1

2 , k + 1
2

)
∆t

2ε
(
i , j + 1

2 , k + 1
2

) )
E

n− 1
2

x
(
i , j + 1

2 , k + 1
2

)
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+ ∆t

ε
(
i , j + 1

2 , k + 1
2

) ·



H n
z

(
i , j +1, k + 1

2

)−H n
z

(
i , j , k + 1

2

)
∆y

−
H n

y

(
i , j + 1

2 , k +1
)−H n

y

(
i , j + 1

2 , k
)

∆z

−J n
sr c, x

(
i , j + 1

2 , k + 1
2

)


. (2.51)

The final form of the explicit time-stepping relation for E
n+ 1

2
x

(
i , j + 1

2 , k + 1
2

)
is

obtained by dividing both sides of (2.51) by

(
1+

σ
(
i , j + 1

2 , k + 1
2

)
∆t

2ε
(
i , j + 1

2 , k + 1
2

) )
:

E
n+ 1

2
x

(
i , j + 1

2 , k + 1
2

)=


1−
σ

(
i , j + 1

2 , k + 1
2

)
∆t

2ε
(
i , j + 1

2 , k + 1
2

)
1+

σ
(
i , j + 1

2 , k + 1
2

)
∆t

2ε
(
i , j + 1

2 , k + 1
2

)

E
n− 1

2
x

(
i , j + 1

2 , k + 1
2

)

+


∆t

ε
(
i , j + 1

2 , k + 1
2

)
1+

σ
(
i , j + 1

2 , k + 1
2

)
∆t

2ε(
i , j+ 1

2 ,k+ 1
2

)

 ·



H n
z

(
i , j +1, k + 1

2

)−H n
z

(
i , j , k + 1

2

)
∆y

−
H n

y

(
i , j + 1

2 , k +1
)−H n

y

(
i , j + 1

2 , k
)

∆z

−J n
sr c, x

(
i , j + 1

2 , k + 1
2

)


. (2.52)

Ey and Ez components on the visible faces of the Yee unit cell E
n+ 1

2
y

(
i − 1

2 , j +1, k + 1
2

)
and E

n+ 1
2

z
(
i − 1

2 , j + 1
2 , k +1

)
(Refer to Figure 2.4) are derived analogously:

E
n+ 1

2
y

(
i − 1

2 , j +1, k + 1
2

)=


1−
σ

(
i − 1

2 , j +1, k + 1
2

)
∆t

2ε
(
i − 1

2 , j +1, k + 1
2

)
1+

σ
(
i − 1

2 , j +1, k + 1
2

)
∆t

2ε
(
i − 1

2 , j +1, k + 1
2

)

E
n− 1

2
y

(
i − 1

2 , j +1, k + 1
2

)
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+


∆t

ε
(
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2 , j +1, k + 1
2

)
1+

σ
(
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2 , j +1, k + 1
2

)
∆t

2ε
(
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 ·
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(
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x
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2
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z

(
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2

)
∆x
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(
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2
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(2.53)

and

E
n+ 1

2
z
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.

(2.54)

Magnetic Field Components

Time-stepping relations for magnetic field components are derived in a similar way.

Figure 2.4 shows the magnetic field components locations in the Yee unit cell. Hx , Hy

and Hz are calculated as follows:

H n+1
x

(
i − 1

2 , j +1, k +1
)=


1−

σ∗ (
i − 1

2 , j +1, k +1
)
∆t

2µ
(
i − 1

2 , j +1, k +1
)

1+
σ∗ (

i − 1
2 , j +1, k +1

)
∆t

2µ
(
i − 1

2 , j +1, k +1
)

H n
x

(
i − 1

2 , j +1, k +1
)
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+


∆t
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)
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)
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(2.55)

H n+1
y
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(2.56)

and

H n+1
z
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+
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(
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)


.

(2.57)

2.3.8 Conclusion

Each EF or MF component in each time-stepping relation (2.52) to (2.57) depends

on its own value at the previous time-step, values of four surrounding components

and the values of electric or magnetic current sources. With the system of six time-

stepping (2.52) to (2.57) the FDTD algorithm calculates the EMF values for all points

of the space grid for the entire simulation time.

Section 2.3.7 presented the FDTD method formulation in Cartesian coordinates.

However, depending on the problem geometry and the required wave–structure in-

teraction accuracy, formulations for alternative grids are possible, e.g. polar grid,

Cartesian grid with collocated EMF positions and hexagonal grid. Hexagonal grids

have large potential in increasing the computation accuracy, because they reduce

the numerical phase velocity well below that of Yee’s Cartesian grid [16].

1: for each time-step n ∈ [1, tmax] do
2: calc H n

3: calc E n

4: excite E n (Tx)
5: output E n (Rx)
6: term E n (ABC )
7: end for

Algorithm 1: FDTD pseudocode. Parameter tmax specifies the total number of si-
mulation time-steps. Abbreviations “calc” and “term” stand for calculate and termi-
nate.

Algorithm 1 shows the major steps of the FDTD method in pseudocode. A se-

quence of steps is repeated for each iteration of the time-step loop. First magnetic

and then electric field values are calculated for the entire FDTD grid. Afterwards the

electric field is excited at the excitation source location Tx
5. Required electric field
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values at the observation points Rx are printed out. The calculation ofE values in

the Absorbing Boundary Condition (ABC) region concludes the time-step loop iter-

ation. Algorithm 1 illustrates the FDTD method in a special form. Additional steps

for the excitation and output of magnetic fieldH might be added in case the user is

interested in behaviour of the magnetic field. When PML is applied as the ABC, the

magnetic field has to be terminated in the ABC region similarly to the electric field.

2.4 Frequency-Dependent

Finite-Difference Time-Domain Method

2.4.1 Important Electromagnetic Properties

Research in the areas of aerial and ground-penetrating radars, high power microwa-

ves, bio-electromagnetics, bio- and nanophotonics, and microlasers requires solu-

tions of Maxwell’s equations for materials exhibiting frequency-dispersive dielectric

properties, non-linearity and gain [16].

Key characteristics of such materials to take into account during the computa-

tion are:

Linear dispersion: material’s electric permittivity ε and magnetic permeability µ

vary with frequency at low intensities of EM-fields.

Non-linear dispersion occurs when the strength of material’s non-linearity varies

with the sinusoidal frequency of the EM-wave. Non-linearity means that ma-

terial’s ε and µ change with intensity of the wave’s local EM-field or Poynting

power flux. Non-linearity is usually exhibited at high intensities.

Gain is the progressive amplitude increase of the EM-wave propagating in the ma-

terial. Gain is usually exhibited by an active dielectric material that draws

power from an external source, e.g. a laser drawing power from a pump. Gain

can also be frequency-dependent and nonlinear.

5Symbols Tx and Rx denote the excitation and observation locations. This notation is common in

the area of Electrical and Electronic Engineering (EEE). Letters “T” and “R” originated from the first

letters of words “Transmitter” and “Receiver”.
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2.4.2 Practical Value of Frequency Dispersion

In 2002 the US Federal Communication Commission (FCC) applied a spectral mask

for the operation of the UWB devices and declared an unlicensed UWB signal use [30].

UWB signal occupies 500 MHz or more in the frequency range of 3.1–10.6 GHz. The

FCC recommendation stimulated an increased interest and a rapid development of

UWB devices. This also had an effect on the CEM methods, which needed to prop-

erly represent the physical phenomena of the UWB waves. The UWB signal is char-

acterised by very short pulses over a wide band of frequency. This UWB property

allows to produce high resolution medical images and high throughput commu-

nication systems. The major UWB application ares are the radar and positioning

systems, biomedical and through-wall imaging as well as remote monitoring [31].

2.4.3 Effect of Frequency Dispersion

The assumption of media parameters being constant is only valid for a narrow fre-

quency band [32]. In a broadband pulse propagation the frequency-dependency of

a medium should be taken into account. Figure 2.7 illustrates the change of ε and

σ with the wave frequency in an human heart. Frequency dispersion is the varia-

tion of the dielectric properties with frequency. A medium where ε and µ are the

functions of frequency ε( fw ) and µ( fw ) is called a dispersive medium.

The dispersive medium reaction to frequency may be represented as a three-

step superposition of (i) an instantaneous response (also known as the infinite fre-

quency response), (ii) a retarded response, that comes from the energy initially ab-

sorbed and then returned by the medium and (iii) a time-delayed response that is

caused by the material inertia and energy dispersion.

In a frequency-dispersive medium the electric permittivity ε becomes a complex

number shown in (2.58). Complex form of ε reflects how the physical process in a

medium affects the electric field:

ε= ε(Re) − ε(Im), (2.58)

where the real part of complex permittivity ε(Re) is related to the amount of energy

from an external field stored in a material and the imaginary part ε(Im) is related to

the loss factor and the amount of energy dissipated or absorbed by the material.

The effect of frequency dispersion can be explained by the relaxation time—the

time it takes dipoles to polarise, when the electric field is applied. Polar molecules
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Figure 2.7: Conductivity and relative permittivity over wave frequency in human
heart [33]. Experimental data measured in the frequency region of 10 Hz to 20 GHz.
Colours red, green and blue illustrate the measurements in the low, medium and
high frequency regimes.

of a dispersive medium rotate, as if they were in a damping frictional medium.

2.4.4 Models for Frequency Dispersion

Three main models exist to characterise the frequency-dependent properties of ma-

terials [31]:

Debye relaxation is the most widely used model. Approximately 60% of all FD–

FDTD methods incorporate the Debye relaxation approach. Based on the ro-

tational motion of molecules Debye model is also appropriate for the simula-

tion of polar liquids in the microwave regime. One of the Debye model draw-

backs is the inability to treat meta-materials (materials with negative ε and

µ).

Debye medium is defined by a complex-valued, frequency-domain suscepti-

bility function for a number of real poles P at distinct frequencies. The relative

permittivity εr in Debye relaxation model is expressed as:

εr (ω) = ε∞+
P∑

p=1

∆εp

1+ ωτp
, (2.59)
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where ∆εp = εs,p −ε∞,p . Symbols εr , εs and ε∞ denote relative, relative static

and relative optical permittivities,∆εp stands for the relative permittivity change

due to the Debye pole p,  is an imaginary unit,ω is an angular frequency and

τ is the pole relaxation time. Index p signifies a term in relation to a specific

Debye pole [16].

Lorentz–Drude rests on the idea of bounded charge motion and proposes a system

with a number of resonant frequencies. Approximately 35% of CEM methods

use this model. Lorenz–Drude model is also capable of handling the metama-

terials efficiently.

The complex-valued, frequency domain susceptibility function with a num-

ber of complex-conjugate pole pairs defines a Lorentz medium. The relative

permittivity using a Lorentzian resonance model is expressed as:

εr (ω) = ε∞+
P∑

p=1

∆εpω
2
p

ω2
p +2 ωδp −ω2

p
, (2.60)

where∆εp = εs,p−ε∞,p . Parameter∆εp denotes the change in relative permit-

tivity due to the Lorentz pole pair, ωp signifies the frequency of the pole pair

(undamped resonant frequency of the medium) and δp stands for a damping

coefficient [16]. The rest of the notation is identical to Debye relaxation model

defined in (2.59).

Drude model is usually applied at optical wavelengths to account for the physics

of internal electron motion in the wave–metal interaction problems. Relative

permittivity in Drude medium is:

εr (ω) = ε∞−
P∑

p=1

ω2
p

ω2 − ωτ−1
p

, (2.61)

with ωp denoting the Drude pole frequency [16].

Cole–Cole model resides on the Cole–Cole circular arc law [31]. Only 5% of com-

mercial and academic CEM software implement frequency-dependency with

the Cole–Cole approach. The relative permittivity in a Cole–Cole model is ex-

pressed as:
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εr (ω) = ε∞+
P∑

p=1

∆εp

1+ ( ωτp )α
, (2.62)

where ∆εp = εs,p − ε∞,p . Value ∆εp denotes the relative permittivity change

due to the pth Cole–Cole pole and the exponent α takes values in the region

of [0,1]. Note that the Cole–Cole model reduces to Debye relaxation (2.59) in

case α= 1 [33, 34].

Debye relaxation model was chosen for implementation in the current project.

The Debye model was preferred over other models because of its well-known and

simple formulation. The intended application of the FD–FDTD method in this work

is the simulation of wave propagation through a human body. The frequency-de-

pendent characteristics of the human body tissues are well presented with the De-

bye model.

2.4.5 Auxiliary Differential Equation Method

Frequency dependency can be incorporated into the FDTD method by using either

a direct or a convolutional approach [31]. In direct approach the EM-field data is

saved to preserve the frequency information and then re-used at the next time-step.

Convolutional approach saves the frequency information into an accumulator, sim-

ilar to a mathematical series. Although the convolutional approach might outper-

form the direct in terms of computation speed, it also has a complex formulation

and is more difficult to implement. Direct implementation scheme was selected for

this project, due to its simplicity.

One pole Debye relaxation model represents the relative permittivity εr as a

complex number:

εr = ε∞+ σ

ωε0
+ εs −ε∞

1+ ωτ
. (2.63)
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Substituting (2.63) into the constitutive relationship for the electric flux den-

sity (2.32) leads to:

D = ε0

(
ε∞+ σ

ωε0
+ εs −ε∞

1+ ωτ

)
E,

∴ D =
(
ε0ε∞+ σ

ω
+ ε0(εs −ε∞)

1+ ωτ

)
E,

∴ D = ω(1+ ωτ)ε0ε∞+σ(1+ ωτ)+ε0(εs −ε∞) ω

ω(1+ ωτ)
E,

∴ D = ( ω+ 2ω2τ)ε0ε∞+σ+ ωστ+ ω(ε0εs −ε0ε∞)

ω+ 2ω2τ
E,

∴ D = ωε0ε∞+ 2ω2τε0ε∞+σ+ ωστ+ ω(ε0εs −ε0ε∞)

ω+ 2ω2τ
E.

(2.64)

After grouping the ω and 2ω2 and eliminating ε0ε∞ and −ε0ε∞ terms (2.64) re-

duces to:

D = 2ω2τε0ε∞+ ω(στ+ε0εs)+σ
2ω2τ+ ω

E. (2.65)

Now extracting theD terms to the left-hand side and keeping theE terms at the

right-hand side (2.66) is obtained:

2ω2τD+ ωD = 2ω2τε0ε∞E+ ω(στ+ε0εs)E+σE. (2.66)

Taking into account the time dependence of exp( ωt ) (2.66) is expressed in time

domain as:

∂2(τD)

∂t 2
+ ∂D

∂t
= ∂2(τε0ε∞E)

∂t 2
+ ∂((στ+ε0εs)E)

∂t
+σE. (2.67)

Equation (2.67) is the generic form of the Auxiliary Differential Equation (ADE),

that will be used to extend the conventional FDTD method to frequency-dependent

FDTD method. ADE is time dependent only, therefore no spatial discretisation is

necessary. The discretised ADE (2.68) is the same for the electric field components

in all coordinate directions Ex , Ey and Ez :

E n+ 1
2 =C1Dn+ 1

2 −C2Dn− 1
2 +C3Dn− 3

2 +C4E n− 1
2 −C5E n− 3

2 , (2.68)
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where

C1 =
τ+∆t

ϕ
, C2 =

2τ+∆t

ϕ
, C3 =

τ

ϕ
, C4 =

χ

ϕ
, C5 =

α

ϕ

with

α= ε0ε∞τ, β= ε0εs +στ, ϕ=α+∆tβ+ ∆t 2σ

2
, χ= 2α+∆tβ− ∆t 2σ

2
.

Since (2.67) is time-dependent only, the spatial coordinates for x-directed com-

ponent (i , j + 1
2 , k + 1

2 ) of E , D, τ, ε∞, εs and σ are equal. This statement also holds

for y and z-directed components. For the sake of clarity the indices denoting the

spatial location of field components and Debye relaxation properties are not shown

in (2.68).

In the FD–FDTD method the Faraday’s law (2.28) remains the same as in the

FDTD algorithm. The constitutive relationship for magnetic flux density (2.33) is

substituted into (2.28) and both the differential (2.38) to (2.40) and discretised (2.55)

to (2.57) for the magnetic field preserve their original FDTD form.

A minor change is done to the Ampere’s law (2.29). In order to use the ADE ap-

proach, the constitutive relation for electric flux density (2.32) is not substituted

into (2.29). In the FD–FDTD method the Ampere’s law is solved for D instead of

E. Therefore, the Maxwell’s curl equation forD becomes:

∂D

∂t
=∇×H −Jsr c . (2.69)

TheσE term responsible for EM-energy conversion to heat vanishes from (2.69),

because it will be accounted for in the ADE (2.67). Equation (2.69) in scalar form for

each Cartesian coordinate component becomes:

∂Dx

∂t
= ∂Hz

∂y
− ∂Hy

∂z
− Jsr c, x , (2.70)

∂D y

∂t
= ∂Hx

∂z
− ∂Hz

∂x
− Jsr c, y , (2.71)

∂Dz

∂t
= ∂Hy

∂x
− ∂Hx

∂y
− Jsr c, z . (2.72)

In the FD–FDTD approach the electric flux density components Dx , D y , Dz are
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used in place of the electric field components Ex , Ey , Ez on the Yee unit cell in Fi-

gure 2.4. Discretising the scalar equations (2.70) to (2.72) on time and space with the

central-difference approximations and applying algebraic transformations identical

to (2.49) to (2.52) yield:

D
n+ 1

2
x

(
i , j + 1

2 , k + 1
2

)=

D
n− 1

2
x

(
i , j + 1

2 , k + 1
2

)+∆t ·



H n
z

(
i , j +1, k + 1

2

)−H n
z

(
i , j , k + 1

2

)
∆y

−
H n

y

(
i , j + 1

2 , k +1
)−H n

y

(
i , j + 1

2 , k
)

∆z

−J n
sr c, x

(
i , j + 1

2 , k + 1
2

)


, (2.73)

D
n+ 1

2
y

(
i − 1

2 , j +1, k + 1
2

)=

D
n− 1

2
y

(
i − 1

2 , j +1, k + 1
2

)+∆t ·



H n
x

(
i − 1

2 , j +1, k +1
)−H n

x

(
i − 1

2 , j +1, k
)

∆z

−
H n

z

(
i , j +1, k + 1

2

)−H n
z

(
i −1, j +1, k + 1

2

)
∆x

−J n
sr c, y

(
i − 1

2 , j +1, k + 1
2

)


(2.74)

and

D
n+ 1

2
z

(
i − 1

2 , j + 1
2 , k +1

)=
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D
n− 1

2
z

(
i − 1

2 , j + 1
2 , k +1

)+∆t ·
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i , j + 1

2 , k +1
)−H n

y
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∆y
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(2.75)

2.4.6 Implementation in Programming Language

Minor alterations to (2.73) to (2.75) and (2.55) to (2.57) are necessary in order to

implement the FD–FDTD method equations in a computer programming language.

Electric flux density, electric field and magnetic field components on a computer are

represented as 3D arrays in Cartesian space. For example a 3D array

Dx(i_min:i_max, j_min:j_max, k_min:k_max) (2.76)

keeps a scalar Dx component in the Cartesian coordinate space, with

i ∈ [imi n , imax]; j ∈ [ jmi n , jmax]; k ∈ [kmi n , kmax]. (2.77)

Indices i , j , k denote a spatial coordinate location in the x, y, z-coordinates. Com-

puter programming languages do not allow real numbers to be used as array indices,

i.e. i , j , k values in (2.76) have to be integer numbers. To achieve the spatial and

temporal discretisation in integer steps the coordinate origins of Dx , D y , Dz and

Hx , Hy , Hz components are shifted in the following manner:
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(2.78)

Since the ADE (2.67) is time-dependent only, origin shifts of the electric field
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components Ex , Ey , Ez are identical to those of Dx , D y , Dz defined in (2.78). Fi-

gure 2.8 illustrates the origin shifts for each component. The shifts defined in (2.78)

reduce the separate origins of Dx ,D y ,Dz ,Ex ,Ey ,Ez , Hx , Hy , Hz components into a

single coordinate origin. Therefore from a programming language point of view

there exist no half space- and time-step offsets between the EM-components in the

FD–FDTD method.

(i, j, k) (i, j, k) (i, j, k)

Dx

x

y

z
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Figure 2.8: Coordinate origin shifts for electric flux density and magnetic field com-
ponents. Smaller coordinate axes show original coordinates locations. Colours red,
green and blue signify x, y, z coordinate directions.

Origin shifts (2.78) have to be applied onto original FD–FDTD update equa-

tions to obtain the method formulation suitable for implementation on a computer.

Since the FD–FDTD method implementation for this project does not require to ac-

count for magnetic material properties the following assumptions were made:

σ∗ = 0, µ=µ0, Msr c = 0. (2.79)

Coordinate shifts (2.78) and assumptions of (2.79) transform the original half-

step update (2.55) to (2.57) for magnetic field into:
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, (2.80)
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After the application of coordinate shifts (2.78) the FD–FDTD electric flux den-

sity update (2.73) to (2.75) become:
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Finally, the origin shifts (2.78) enable implementation of the electric field up-

date (2.68) in integer space- and time-steps:

E n =C1Dn −C2Dn−1 +C3Dn−2 +C4E n−1 −C5E n−2, (2.86)

where

C1 =
τ+∆t

ϕ
, C2 =

2τ+∆t

ϕ
, C3 =

τ

ϕ
, C4 =

χ

ϕ
, C5 =

α

ϕ

with

α= ε0ε∞τ, β= ε0εs +στ, ϕ=α+∆tβ+ ∆t 2σ

2
, χ= 2α+∆tβ− ∆t 2σ

2
.

The FD–FDTD algorithm progresses in time by updating magnetic field values

with (2.80) to (2.82), then calculating electric flux density values with (2.83) to (2.85)

and finally using Auxiliary Differential (2.86) to advance the electric field values. The

FD–FDTD method is very similar to the ordinary FDTD. The ADE introduces an ad-

ditional intermediate step into the calculation routine. Instead of intertwined H

and E updates the FD–FDTD approach has a mutually interdependent H ,D and

E updates.

1: for each time-step n ∈ [1, tmax] do
2: save Dn−1 → Dn−2, Dn → Dn−1

3: save E n−1 → E n−2, E n → Dn−1

4: calc H n

5: calc Dn

6: calc E n

7: excite E n (Tx)
8: output E n (Rx)
9: term Dn (ABC )

10: term E n (ABC )
11: end for

Algorithm 2: FD–FDTD pseudocode. Parameter tmax specifies the total number
of simulation time-steps. Abbreviations “calc” and “term” stand for calculate and
terminate.

Algorithm 2 lists the major steps of the FD–FDTD method in pseudocode. All

EM-values are calculated in a global time-step loop. The algorithm steps repeat for

each loop iteration. First the previously calculated values of D and E are saved

into auxiliary data arrays. Previously calculated values at time-steps n −2 and n −1

are needed to update the current time-step values. Then H ,D and E values are
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advanced on time for all spatial locations. The calculation order can also be diffe-

rent. However, it is important to observe the circular dependency of theH ,D and

E components. After the general EM-value calculation is over theE component at

the excitation location Tx is injected with a source signal, e.g. a Gaussian pulse. The

source excitation is administered via the Jsr c component. It is also possible to excite

the electric flux density components Dx , D y or Dz . Then the EM-values at the obser-

vation locations Rx are printed into the files. Finally, the computation domain for

electric flux density D and electric field E is terminated with the ABC calculation.

The “true” ABC is calculated for the electric flux density components. The electric

field values in the ABC region are just re-calculated using the new values ofD.

Similarly to the FDTD method dissected in Algorithm 1, magnetic current Msr c

might be injected into magnetic field components Hx , Hy and Hz if the user is in-

terested in the magnetic field behaviour. In case of PML all three EM-components

H ,D andE have to be terminated in the boundary region.



Chapter 3

Subgridding in Review

This chapter explains the aim of subgridding in the Finite-Difference Time-Domain

method and highlights the key aspects of a subgridding scheme. A detailed review of

modern subgridding techniques including classical, Huygens and hybrid subgrid-

ding is presented. This chapter also covers the limitations of a classical subgridding

scheme and illustrates alternative subgridding methods as Domain Decomposition

and Dielectric Subgrid Resolution. Finally, the material traverse ability and human

body applications of subgridding are discussed in the concluding sections.

3.1 Computational Electromagnetics Methods

Numerous Computational Electromagnetics (CEM) methods exist to simulate an

electromagnetic (EM) wave propagation. Selection of a method is problem-depen-

dent. Each method is more suitable for a particular group of problems, usually de-

scribed by a problem size in terms of wavelengths. The Finite-Difference Time-Do-

main (FDTD) method is applied to problems ranging from 0.01 to 10 wavelengths.

Figure 3.1 shows examples of CEM methods with their example application areas [35].1

3.2 Numerical Dispersion in FDTD Method

In free space all plane waves propagate at the same speed, irrespective of frequency.

But in the FDTD approach plane wave phase velocity depends on the spatial and

1Common CEM methods are abbreviated to the Method of Moments (MoM) and the Finite Ele-

ment Method (FEM). The word “body” in the example application areas refers to human body.

66



3.3. AIM OF SUBGRIDDING 67

FDTD
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FEM
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large antennas
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CEM methods

Figure 3.1: Computational Electromagnetics methods

temporal increments,2 and the angle of propagation [36]. This effect is called nu-

merical dispersion. However, angle of the wave propagation does not dramatically

change the phase velocity. To avoid numerical dispersion sufficiently high spatio-

temporal discretisation is necessary. With discretisations in the order of ∆s = λ/10

the error on phase velocity is lower than 1.5% and with ∆s = λ/20 the error reduces

to 0.15%, where ∆s is a spatial increment and λ is a wavelength.

3.3 Aim of Subgridding

Modern engineering problems require simulation of electrically large objects with

fine geometric details. Due to Courant-Friedrichs-Lewy (CFL) stability criterion,

also known as Courant criterion, the size of time-step in the FDTD method depends

on the size of space-step. Common practice is to set the space-step ∆s depending

on the wavelength λ of the problem and then adjust the time-step ∆t according to

the CFL criterion [37]:

∆s ∈
[
λ

10
,
λ

20

]
, ∆t < ∆s

c
p

3
, (3.1)

where
∆s space-step,

∆t time-step,

λ wavelength,

c speed of light.

2In this work the notions of spatial and temporal increments, spatial and temporal steps and

space- and time-steps are used as synonyms.
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To simulate an object with high precision, a uniform fine grid will be needed

everywhere in space. Moreover, to preserve the algorithm stability, the simulation

will have to advance in fine temporal steps. This approach of using fine spatio-

temporal resolution throughout the entire space is computationally expensive. But

usually only a part of the simulated structure has fine geometry. The rest of the

features are smooth, homogeneous and contain little change. These regions could

be simulated with the coarse spatio-temporal resolution.

The main idea of subgridding is the increase of simulation efficiency by dividing

the computation domain into subdomains with independent spatial and temporal

increments. Subgridding allows selective placing of a high resolution mesh, called

subgrid (SG), around the delicate object structure. The rest of the object will be

simulated with large spatio-temporal increments in the coarse grid, called the main

grid (MG). In subgridding, the CFL criterion is maintained independently for each

grid. Application of subgridding is always a compromise between the accuracy and

efficiency. Although, the simulation results with subgridding will be obtained faster,

than with the all fine FDTD grid, these results will be less precise.

3.4 Key Aspects of Subgridding

There are many aspects defining the quality of a subgridding scheme.

Subgridding interface is the cornerstone of a subgridding scheme. Subgridding

interface specifies the way main and subgrid interact with each other during

the simulation.

Rapid change in mesh size at the interface causes spurious reflections. Wave

phase velocity changes when the wave enters from a low resolution coarse

grid to a high resolution fine grid. Problems arise when that wave returns

from the fine grid back into the coarse grid and starts interacting with the

original coarse grid. To ensure precise results a good interpolation scheme

and a small enough spatial step in the coarse grid should be chosen. Coarse

grid spatial increment should be much smaller than the shortest wavelength

under study [38].

Implementation of the interface contributes dramatically to the overall sub-

gridding stability. Usually field components at the interface are interpolated

and extrapolated at each time step [39]. Therefore selection of the spatial
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and temporal inter- and extrapolation schemes is important. These schemes

should be precise and efficient. Okoniewski et al. [40] provide a compara-

tive analysis of tri-linear, cubical splines and shape preserving splines spatial

interpolation. Tri-linear interpolation was found to be the fastest, whereas

shape preserving splines is the most expensive and cubical splines may intro-

duce local oscillations. Xiao et al. [41] incorporate special treatment of corner

and edge elements at the subgridding interface with a modified interpolation

pattern.

Also the choice of interpolation coefficients affects the algorithm stability. Wang

et al. [42] designed a framework to derive interpolation coefficients at the sub-

gridding interface. Three and five points linear interpolation coefficients were

developed.

To achieve better stability the symmetry of the field components at the inter-

face should be preserved [43]. The same coarse grid components, that influ-

ence fine grid, have to receive feedback from the fine grid components.

Quality of the interface defines the amount of field reflection. Artificial reflec-

tion from the interface occurs due to rapid change in numerical dispersion

between the coarse and fine grids. Good subgridding interfaces produce low

reflection.

Modern subgridding schemes use fields collocation to avoid extrapolation and

reduce reflection. In this case locations of the coarse electric or magnetic

field components at the interface coincide with the locations of some fine grid

components. Celuch-Marcysiak and Rudnicki [44] developed a methodology

to predict numerical reflection coefficients from a subgridding interface. Re-

flection is expressed as a function of angle or frequency. The authors con-

clude, that collocated schemes produce lower interface reflection, whereas

full reflection starts at the cut-off and higher frequencies.

Subgridding ratio is the ratio between the space-steps in the main and subgrid.

Usually it is the same for time-steps:

r = ∆sa

∆sb
= ∆ta

∆tb
, (3.2)

where
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∆sa space-step in main grid,

∆sb space-step in subgrid,

∆ta time-step in main grid,

∆tb time-step in subgrid.

Relative to the all fine grid case, high subgridding ratio increases the total ef-

ficiency of the subgridding algorithm, but at the same time reduces the accu-

racy of numerical solution, especially in the main grid region.

Time advancement in a subgridding scheme can be divided into two main cat-

egories: synchronised unistep and synchronised multistep. In this context

synchronised means that r fine grid time iterations are performed within one

time-step of the coarse grid. Fine grid continuously synchronises with the

coarse grid. Simulation for both grids runs simultaneously.

Unistep schemes use the same smallest time step ∆tb for both grids. This

approach is easier to implement, but it is less efficient, since the coarse grid

unnecessarily uses smaller temporal increments. Unistep approach naturally

reduces to spatial subgridding only. On the contrary, multistep schemes pro-

vide the true merit of subgridding. Both spatial and temporal increments are

different. Simulation in coarse grid is executed for larger spatial and temporal

steps.

Grid geometry is the way of meshing the simulation space into smaller units, called

cells. Commonly for FDTD methods the grid geometry bears a uniform and

orthogonal character.

Grid recursion (also known as nesting or multilevel subgridding) is the possibility

of allocating subgrids within subgrids recursively. Although more computa-

tionally expensive than one level subgridding, grid recursion allows finer tun-

ing of the code to a given problem and reduces numerical dispersion by en-

abling a smoother change from ∆sa to ∆sb . Figure 3.2 gives an example of a

grid recursion with two levels of subgridding in a two-dimensional (2D) space.

Number of subgrids is the amount of subgrids supported by the algorithm imple-

mentation. Normally variable number of subgrids is only the capability of a

particular code, not an algorithm restriction. Support for multiple subgrids

enables the simulation to concentrate on multiple volumes of higher preci-

sion.
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r = 8

r = 4

x

y

Figure 3.2: Grid recursion in 2D. Two grids are nested. First subgrid with r = 4 and
second subgrid with r = 8. Subgridding ratios are given with respect to the main
grid.

Stability is a crucial issue for all subgridding algorithms. In context of the FDTD

method, algorithm stability means, that no numerical error introduced at cer-

tain time moment will accumulate [41]. Due to reflection from the interface

many subgridding algorithms suffer from the late-time instabilities. Nume-

rous remedies have been proposed to tackle the instability. Amongst them

are the gradual change of mesh size, domain overriding, high order spatial in-

terpolation and signal filtering. Thoma and Weiland [45] categorise the na-

tive FDTD method instabilities into dynamic and static. Dynamic instabi-

lity can be of two origins: (i) model instability caused by the spatial deriva-

tives approximation and (ii) Courant instability created by the time deriva-

tives approximation. Static instability arises with the change of the FDTD grid

topology. Usually two approaches are used to prove the stability of a subgrid-

ding scheme theoretically: the Matrix method and the Fourier method [41].

Along with the theoretical methods, stability of a subgridding algorithm can

be proved numerically. In this case the simulation is run for various configu-

rations for a large number of time steps, commonly in the order of 106.

Accuracy of a subgridding approach is the ability of numerical solution to converge

to the actual solution [41]. Accuracy of a subgridding scheme should be com-

parable to that of the homogeneous fine grid solution in the critical simulation

regions. Subgridding accuracy mostly depends on the interface implementa-

tion and the selection of the inter- and extrapolation methods.
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Adaptability of the subgridding algorithm to a given physical problem is another

highly desired feature. A good example might be a moving high resolution

window that follows the wave propagation as in the Adaptive Mesh Refine-

ment (AMR) algorithm.

Material traverse is the capability of a subgridding algorithm to allow dielectric

media to reside in the fine grid and especially cross the subgridding inter-

face. Material traverse functionality extends subgridding to account for mate-

rial frequency response. This issue is vital in biomedical and electromagnetic

compatibility (EMC) applications of subgridding.

Performance cost of subgridding includes the algorithm complexity and the pro-

gramming complexity. Subgridding interface, field inter- and extrapolation

and filtering schemes should be efficient. Programming complexity is mainly

defined by the mathematical formulation of the algorithm. Algorithm imple-

mentation is a one time cost and is less important, compared to the algorithm

complexity, that exhibits computational cost at every run time. As practice

shows, good CEM algorithms are simple, elegant, adhere to the real world

physics and are defined in a clean, straightforward manner.

Parallelisation of a subgridding algorithm might be considered another step to-

wards the improvement of the overall simulation efficiency. Parallelisation

will inevitably contribute to the programming complexity, but done in a right

manner will dramatically increase subgridding performance. With the rise

of Grid Computing, High Performance Computing (HPC) and Graphical Pro-

cessing Unit (GPU) Computing parallelisation aspect of subgridding becomes

an important and achievable goal in modern research.

3.5 Modern Subgridding Techniques

3.5.1 Classical Subgridding

Subgridding is usually applied to increase the efficiency of the FDTD method and

enable the simulation of electrically large problems. Figure 3.3 highlights the main

approaches for the solution of electrically large problems [46]. Domain decom-

position methods highlighted in Figure 3.3 refer to the group of FDTD techniques

that run two sequential simulations—one with the coarse and another with the fine
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spatio-temporal resolution. Section 3.5.7 describes the domain decomposition ap-

proaches in greater detail. Higher-order schemes in Figure 3.3 refer to higher-or-

der FDTD methods that achieve less numerical dispersion and permit coarser grid

discretisation for a given error bound than the classical FDTD method. Higher-or-

der FDTD schemes allow efficient simulation of electrically large objects or long

distance of propagation [47]. Examples of such methods include the second-or-

der in time and fourth-order in space FDTD (2,4) [47–49] or second-order in time

and sixth-order in space FDTD (2,6) [47]. Another example of higher-order FDTD

method is presented in [50]. Young et al. [50] use compact central-difference appro-

ximation for spatial derivatives in Maxwell’s equations and four-stage Runge–Kutta

integrator [51] for temporal derivatives.

Domain decomposition

Hybrid

Subgridding

Higher−order

Electrically large problems

Figure 3.3: Methods for solution of electrically large problems

Classical subgridding methods are the most popular simulation schemes. Com-

monly subgridding is implemented by separating the main computation domain

into subdomains with different spatial and temporal increments: ∆sa ,∆ta and∆sb ,∆tb .

The interface area between the main and the subgrid can be viewed as a boundary

condition for both grids. Coarse grid wave propagation terminates at the interface.

The coarse grid values laying at the interface are interpolated and passed to the fine

grid FDTD update equations. Similar action is taken in the fine grid. When the wave

in subgrid reaches the interface, field components are extrapolated. These extrapo-

lated values are subsequently used in normal FDTD update equations for the coarse

grid interface values.

Apart from the small amount of works in spatial subgridding only [52, 53] and

temporal subgridding only [54, 55] the majority of algorithms offer true spatio-tem-

poral subgridding. Usually prototyping of new subgridding algorithms starts in 2D.
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There is a minor corpus of research works presenting 2D approaches [38, 42, 52, 54,

56–58]. To avoid computationally expensive extrapolation new subgridding algo-

rithms collocate the coarse and fine grid field components at the interface [40, 59–

62].

Due to increased programming complexity a highly desirable feature of subgrid

recursion is still scarcely presented in the modern approaches [57, 63–66]. Alter-

native to field interpolation at the interface, a few subgridding projects base the in-

terface value calculation on the travelling wave equation [39,67,68], passive lumped

circuits equivalent to Maxwell’s equations (ME) [69,70], Kirchhoff integral formula [71]

and weighted current density passing through the cell [43, 72]. Remarkable is the

work of Chow et al. [64], that split the subgrid region into blocks and solve ME in-

side the subgrid sequentially, block-by-block.

The most common ratios in subgridding approaches are two [40, 45, 52, 57, 65,

73], three [39, 41, 43, 46, 58, 62, 70, 72, 74–80] and four [38, 66, 67]. Less frequently

subgridding techniques accommodate higher ratios: five [53, 81], seven [60, 82] and

eight [83]. Ratios greater than 10 are very rare: 15 [84], 16 [85] and 17 [61].

3.5.2 Classical Subgridding Optimised

Two techniques [81, 83] reduce the Courant number NC F L to 0.55 and 0.57 respec-

tively to increase the algorithm stability and allow higher subgridding ratios. How-

ever, the reduced Courant number also results in the reduced subgridding efficiency.

To further increase subgridding stability some approaches apply overlapped grids

and domain overriding [83,86,87]. Rarely a special treatment for interface edge and

corner elements is used [87].

Interesting is the work of Donderici and Teixeira [87], that explains the positive

effect of overlapped grids to combat aliasing, high frequency cut-off and numerical

impedance mismatch. Aliasing is the inexact correspondence between the fine and

coarse grid medium field values. Apart from the overlapped grids, aliasing effect

can be decreased using the Finite Impulse Response (FIR) filtering. High frequency

cut-off occurs because the high frequency components in the subgrid cannot be

present in the main grid due to the Nyquist limit. Also spurious reflections are pro-

duced when the high frequency signal exists in the subgrid. Finally, the numerical

impedance mismatch is caused by different cell sizes in the fine and coarse grids.

Here, in line with the grid overlapping, a phase compensation technique can be ap-

plied in the coarse grid to reduce the mismatch.
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Unique to Donderici and Teixeira [86–88] is the method of domain overriding,

when the auxiliary fine and coarse grids are created in the simulation domain and

the one way field injection is used to prevent propagation return to the subgridding

interface.

Only Vaccari et al. [84] use filtering in their work to delay the late-time instabil-

ities. Typical accuracy–efficiency interdependency holds in filter application. Fil-

ters of 4th order slightly outperform the 2nd order filters for a higher computational

cost. The authors also suggest increasing the filter order with the increase of the

subgridding ratio r.

Another relatively novel approach to combat the instabilities is the decoupling

of spatial and temporal interfaces [41,78,79,89,90]. In this case the temporal subgrid

encloses the spatial subgrid with a minimum separation distance of 3∆sa . Figure 3.4

illustrates the decoupling of spatial and temporal interfaces for a subgridding ratio

r = 2 [78]. Chow et al. [90] found the decoupled subgridding scheme stable for 107

iterations.

x

y

spatial subgrid

main grid

temporal subgrid

Figure 3.4: Decoupling of spatial and temporal interfaces in 2D. Minimum distance
between the temporal and the spatial subgrids is 2∆sa . Spatial subgridding ratio is
4.

Wang et al. [78] have tested the accuracy of classical subgridding schemes by

implementing various techniques into a commercial software package XFDTD. The

authors suggest that subgridding accuracy mostly depends on the spatial interpo-

lation rather than temporal. It was also confirmed that significant errors are caused

by a material traversing the subgridding interface. To achieve better stability and ac-

curacy White et al. [83] recommend at least 4∆sa separation distance between the

subgridding interface and the dielectric material boundary.
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Another interesting approach is the application of 4th order spatial approxima-

tion in normal FDTD method. Georgakopoulos et al. [91] use 2nd order temporal

and 4th order spatial approximation (FDTD (2,4)) for the fine grid and conventional

FDTD (2,2) for the coarse grid. Use of FDTD (2,4) allowed Sun and Choi [85] to

achieve subgridding ratio of 16.

Inspired by the AMR algorithm, popular in the area of Computational Fluid Dy-

namics (CFD), Liu and Sarris [92,93] and Gazave et al. [94] develop a creative idea of

an AMR–FDTD method. This method offers a high resolution parallelepiped, that

follows the wave propagation in a coarse grid.

Flexible interconnection of grids with various geometries is explored by Don-

derici and Teixeira [95].

Due to considerable programming efforts parallel subgridding approaches are

still uncommon. Only four works present parallelisation of their subgridding sche-

mes [57, 64, 96, 97].

3.5.3 Huygens Subgridding

Huygens Subgridding (HSG) is a promising subgridding technique consecutively

developed by Bérenger from 1D to 3D [98–102]. Main and subgrids are intercon-

nected via the Huygens Surfaces (HS) that transfer EM energy from coarse-to-fine

and fine-to-coarse grids through equivalent currents. Major advantages of the HSG

technique are (i) no theoretical limitation on the subgridding ratio and (ii) low re-

flection from the subgridding interface. But as many other subgridding schemes,

the HSG suffers from late-time instabilities.

Gradoni et al. [103] conducted the accuracy evaluation of the HSG using a rect-

angular T E10 waveguide and found the discrepancy of 2–3 dB between the HSG

and the reference codes negligible. Xie et al. [104] have successfully applied HSG

with r = 3 for the FDTD simulation of plasma problems. To combat the instabil-

ities Bérenger [99] proposed a cosine low-pass filter. Recently Zhou and Schnei-

der [105,106] developed this approach further by offering a combination of a cosine

filter with an artificial constant loss and dispersive gain. Although more computa-

tionally expensive, the filter and artificial loss approach eliminated both the oscil-

lating and drift instabilities.

Recently the HSG–FDTD method was expanded to incorporate the Frequency

Dependency (FD). Material frequency response is implemented with the Auxiliary

Differential Equation (ADE) method using the one pole Debye relaxation model.
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Costa et al. [107] tested the new HSG–FD–FDTD approach with metallic objects

and r = 3 in 1D. This work was followed by Abaļenkovs et al. [108], and Costen and

Bérenger [109] that applied the 1D HSG–FD–FDTD scheme with r = 15 to a problem

of wave propagation in the human torso.

3.5.4 Limitations of Classical Subgridding Method

Higher precision in the classical FDTD method can be achieved by using non-uni-

form grids and subgridding. But along with efficiency non-uniform grids and sub-

grids may introduce the following problems:

• damage of second-order accuracy,

• non-physical reflection in wave propagation,

• possible increase of numerical dispersion,

• numerical instability,

• complexity of creating a non-uniform grid [36].

3.5.5 FDTD and FEM Suitability for Subgridding

Explicit FDTD method is very accurate when executed on a structured mesh. Ap-

plication of a subgridding approach or a non-uniform FDTD mesh might be con-

venient for solving problems when only a small part of the problem requires higher

precision. In this case the use of subgridding and non-uniform mesh is always a

compromise between the spatio-temporal resolution and computational efficiency.

Contrary to the FDTD method the FEM discretises the space by elements of ar-

bitrary size and shape. Field interpolation in FEM is governed by either a scalar trial

function for nodal elements or by a vector trial function for Whitney elements. FEM

is typically more efficient in frequency domain than the FDTD scheme. Program-

ming of FEM in time domain is non-trivial and FEM based on implicit approaches

is computationally expensive [36].

3.5.6 Hybrid Subgridding

Hybrid subgridding approaches are based on a combination of the conventional

FDTD and the FEM. The aim of a hybrid scheme is to combine the strong points of
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both the FDTD and FEM. Entire subgrid or only the subgridding interface is imple-

mented via the Finite Elements (FE) approach. Courant criterion does not limit the

FEM, therefore no temporal interpolation is necessary in hybrid subgridding sche-

mes. Typically only spatial interpolation exists in a hybrid subgridding scheme. Also

the FE region allows the usage of an unstructured mesh, e.g., tetrahedral and hexa-

hedral. Grid geometry can be defined in other coordinate systems. Donderici and

Teixeira [95] explain the way of interfacing the FE with the FDTD grids, where the

adjacent grids are extended towards each other and two different representations

of the same field coexist. Then scaling and rotation matrices are applied at the grid

interface.

Similarly to conventional subgridding, new hybrid techniques are first tested in

2D [110, 111]. A multitude of methods are used to implement a hybrid subgrid-

ding algorithm: Discrete Wavelet Transform (DWT) [110, 112], Whitney forms [36,

113,114], Lobatto Cell [115], Model Order Reduction (MOR) [111,116,117], Cell Me-

thod (CM) [118, 119] and hanging variables [120]. Minority of works present syn-

chronised unistep hybrid methods [120, 121]. Hybrid methods host the standard

subgridding ratios of two [110], three [118, 119, 122] and four [120, 123] as well as

higher ratios of five [124], nine [116], 11 [121], and 15 [117].

A small group of research projects base their subgridding schemes on a mixture

of the Alternating Direction Implicit–Finite-Difference Time-Domain (ADI–FDTD)

and conventional FDTD methods [124–127]. Here, ADI–FDTD usually occupies the

subgrid. ADI–FDTD is not bound by the Courant criterion and allows high resolu-

tion grid in space with coarse resolution grid in time.

Another branch of hybrid methods is the Finite Integration Technique (FIT) based

subgridding approaches [96,128–130]. FIT approach is matrix oriented and requires

solution of high dimensional linear systems.

The benefits of using hybrid methods are the guaranteed stability,3 ability to ac-

commodate higher subgridding ratios and flexible subgrid geometry. On the other

hand mathematical algorithm formulation is usually complex and implementation

puts a heavy burden on computation resources. Computationally expensive block

diagonal [96, 112–114], symmetric positive semi-definite [111, 118, 119, 121], posi-

tive definite [36], dense [116] or sparse [120] matrix inversion has to be calculated at

every time step in the FE region.

3Although stability of the FEM itself is not always guaranteed, many of the hybrid subgridding

approaches described in Section 3.5.6 are proven to be stable [113, 114, 118–120, 124, 126].



3.5. MODERN SUBGRIDDING TECHNIQUES 79

3.5.7 Domain Decomposition

Introduced by Kunz and Simpson [131] in 1981 the domain decomposition (DD) or

the Dual Grid (DG) was a first technique to increase efficiency of the original FDTD

method. In essence, the DG method runs two sequential FDTD simulations: one

with coarse and another with fine grid resolution. While the object is simulated in a

coarse grid, tangential electric field components at the boundary are stored at each

iteration. After interpolation the stored coarse grid values are injected into the fine

grid as the excitation source for the simulation [35]. High frequency noise caused by

field interpolation can be filtered out. Alternatively, depending on the problem, the

order of runs might be changed: fine grid simulation can be run first and its results

injected into the consecutive coarse grid simulation [132].

The advantage of the DG–FDTD scheme is the flexibility it provides for testing

an object in various environments: fine grid results have to be obtained only once

and can be subsequently re-used for future tests [132]. For example, consider a sur-

rounded antenna analysis case. At first the antenna is simulated without its envi-

ronment in the fine grid. Antenna’s radiation pattern is saved and injected as the

excitation at the second simulation step in the coarse grid. The second simulation

step contains the antenna’s environment. Multiple environments of an antenna can

be tested with the same radiation pattern obtained with the fine grid. Another ben-

efit of using the DG–FDTD approach is the very small modification required to the

original FDTD implementation. The DG–FDTD method is robust, while it only uses

the basic FDTD scheme. The only serious drawback of the DG approach is the time

consumption, because two independent FDTD simulations have to be run sequen-

tially.

An interesting idea of a Switchable Grid–Finite-Difference Time-Domain (SWG–

FDTD) was presented by Pascaud et al. [133]. An object and its environment are

simulated in the fine grid until a certain switching time tsw . At time tsw , after most

of the energy will have left the computation domain and lower simulation precision

can be tolerated, the method switches into the coarse grid mode and runs until the

observation time tobs . Field components are interpolated and the high frequency

noise is dealt with the correction step, when both fine and coarse grids co-exist.

Finally, the computationally expensive Perfectly Matched Layer (PML) Absorbing

Boundary Conditions (ABC) are replaced with less expensive Mur ABC. Compared

to classical subgridding schemes the SWG–FDTD method is naturally more stable

since the field interpolation is done only once.
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3.5.8 Dielectric Subgrid Resolution

Sometimes subgridding approaches are used on a scale of a single FDTD cell to in-

crease the material dielectric resolution [134]. This method is called the Dielec-

tric Subgrid Resolution (DSR). DSR can be effectively applied instead of conformal

FDTD method [135–137] to combat staircasing FDTD errors on curved shapes.

3.5.9 Material Traverse

Material traversing the subgridding interface remain one of the difficulties of con-

ventional subgridding. Dielectric material crossing the interface may introduce ad-

ditional reflection and stimulate earlier occurrence of instability. Chevalier et al. [37,

138] used collocated field components at the interface enforcing odd subgridding

ratios. Only magnetic field components are interpolated at the interface. Electric

fields are continuous at the interface, thus enabling non-magnetic material traverse.

Donderici and Teixeira [88] in their FDTD subgridding with domain overriding dec-

imate and extrude discretised dielectric materials traversing the interface. Pernice

et al. [126] and Meglicki et al. [57] allow material traverse by expanding FDTD sub-

gridding to Lorentz–Drude material model.

3.5.10 Human Body Applications of Subgridding

Application of subgridding techniques to modelling wave propagation in human

body is scarce. Kopecký and Persson [82] used classical FDTD subgridding with

ratios of 3, 5 and 7 to perform dosimetry in the inner ear. Twenty-four biological

tissues in the head were specified by mass density and dielectric properties in the

middle of the GSM frequency range 1710.2–1784.8 MHz. Xiaoli and Wenbing [68,80]

applied conventional subgridding with r = 3 to examine wave propagation in in-

terstitial applicators for bone cancer treatment. Human body tissues were charac-

terised by relative electric permittivity εr and electric conductivity σ. Barchanski

et al. [96] simulated current distribution from an electric hair dryer and an electric

heating blanket inside the human torso. Dispersive materials were expressed with

matrices of reluctivities, electric conductivities and permittivities.

Since subgridding offers dramatic improvements in simulation time, it is ex-

pected to see a wider use of subgridding in biomedical applications in the near fu-

ture.



Chapter 4

Huygens Subgridding

This chapter describes the principles of the Huygens Subgridding (HSG) method (Sec-

tion 4.2) including the concept of equivalent currents at the Inner and Outer Sur-

faces (Section 4.4) and the full HSG algorithm (Section 4.5). Instability of Huygens

Subgridding is addressed briefly in Section 4.6. Section 4.7 concludes this chapter

by presenting the mathematical formulation of the HSG method in 3D.

4.1 Introduction

A well-known drawback of the FDTD method is the inability to model geometric

details smaller than the FDTD cell size. Subgridding methods offer approaches to

overcome this problem. Subgridding replaces part of the FDTD grid with a finer

grid [98].

Contemporary subgridding techniques are based on an inter-grid interface act-

ing as a boundary condition. Due to numerical dispersion speed of wave propaga-

tion at the interface is different. Change of wave velocity at the interface results in

spurious reflections and limited subgridding ratios. Also many subgridding algo-

rithms suffer from the instability.

Huygens Subgridding (HSG) solves Maxwell’s equations separately in main grid

and subgrid. Instead of a direct connection between the grids the HSG algorithm

uses Huygens Surfaces (HS) that transmit inter-grid influence via equivalent cur-

rents. Advantages of the HSG method include an arbitrary large subgridding ratio

and no numerical reflection from the subgridding interface. HSG ratio is defined

in (4.1):

81



82 CHAPTER 4. HUYGENS SUBGRIDDING

r = ∆sa

∆sb
= ∆ta

∆tb
. (4.1)

In order to achieve field collocation (and avoid field extrapolation on space), the

HSG ratio r has to be an odd number. In contrary to the benefits, the HSG approach

suffers from the instability.

4.2 Principles of Huygens Subgridding

The equivalence theorem plays an important role in the HSG method’s formulation.

According to the equivalence theorem field produced by outside sources in a given

part of space can be reproduced impressing the EM current densities on the surface

separating two parts of space [99]:

Ksr f = n×Hi , (4.2)

Lsr f =−n×Ei , (4.3)

where
Ksr f electric current density (A/m2),

Lsr f equivalent magnetic current density (V/m2),

Ei electric field (V/m),

Hi magnetic field (A/m),

n unit vector (−).

Symbols Ksr f ,Lsr f denote the current densities injected onto the separating

surface and Ei ,Hi are the fields that would exists on the surface, if the sources

were present. Unit vectorn is normal to the surface and is oriented in the direction

opposite to the sources. Therefore, the Huygens surface is a surface with an equiva-

lent current, that is used to impress an incident wave striking a given structure. The

Anti-Huygens surface is the Huygens surface with a unit vector n oriented towards

the sources.

Figure 4.1 explains the operation of the Huygens surface in 1D. Consider Fi-

gure 4.1a with the excitation source located in the main grid xa . Huygens surface

radiates from the main into the subgrid. Equivalent current (marked with red ar-

rows) is taken at two points in the main grid and impressed at the corresponding
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two points in the subgrid xb .

Figure 4.1b presents a reversed situation with the source placed inside of the

subgrid. Two points in the subgrid radiate to two points in the main grid via the

Huygens surface. Points in the main grid are located at the same physical locations

as the points in the subgrid. An equivalent current is shown with blue arrows.

ax

x b

Source

*

Scattered field Total field Scattered field

Huygens surface

(a) Radiation from main to subgrid

ax

x bScattered fieldTotal field Total field

Source

Huygens surface

*
(b) Radiation from subgrid to main grid

Figure 4.1: Huygens surface radiation [99]

Main principle of the HSG method is a combination of the two cases presented

above—main and subgrid spaces interact via the Inner and Outer Huygens surfaces.

Inner Surface (IS) radiates from the main grid into the subgrid and the Outer Sur-

face (OS) radiates from the subgrid into the main grid.

The HSG method replaces the original physical problem with an equivalent prob-

lem that consists of two or more spaces. One space will become the main grid with

coarse spatio-temporal resolution and another the subgrid with the fine spatio-tem-

poral resolution. Figures 4.2a and 4.2b illustrate the original and equivalent prob-

lems as seen by the HSG method. Working and Non-working regions shown in Fi-

gure 4.2b are the regions outside of the OS–IS interface.

Bérenger has drawn and proven the following two propositions that constitute

the main laws of the HSG operation [98]:
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x a

Media, sources, objects

Boundary condition

(a) HSG original problem

1

Working A

2

Non−working A

3

Working A

Non−working B

6

Working B

5

ax

x b

OS IS IS OS

Non−working B

4

(b) HSG equivalent problem. Simulated wave propagates in the working regions 1, 5, 3.
Regions 1 and 3 are located in the main and region 5 in the subgrid. For practical reasons
the wave also travels via the non-working main grid region 2 and the non-working subgrid
regions 4 and 6, but it has no influence onto the simulation result.

Figure 4.2: HSG principles [102]

Proposition 1. Sources in non-working regions a or b radiate no field into working

regions a or b.

Proposition 2. Field radiated into working regionsa and b by sources in the working

regions a and b is identical to the field, that would be radiated at the same location

in a single space composed of media, sources in working regions a and b, and media

inside the OS–IS interface.

The above propositions describe the ideal state theory. However, there is a lit-

tle discrepancy between the theory and practice. First, the objects in non-working

regions can influence the computation results. Second, in theory any Absorbing

Boundary Conditions (ABC) can terminate the subgrid region, but in practice it is

recommended to use the Perfectly Matched Layer (PML) to achieve better instabi-

lity suppression of the HSG method.

Figure 4.3 adopted from [98] shows a practical application case of the HSG scheme.

Modelling a 1.01 mm slot with spatial increments of the coarse FDTD grid ∆sa =
50 mm would be impossible. But placing the slot and the surrounding region into

the subgrid with fine spatial discretisation steps of ∆sb = 0.505 mm makes it a rea-

listic task. In case of the HSG method with a subgridding ratio of r = 99 the thin slot

would be modelled using two subgrid cells.
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sb = 0.505

Ei

ki

PML

OS
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Subgrid

Equivalent problemOriginal problem

Main gridIncident wave

Figure 4.3: HSG space decomposition, 2D [98]. All distances are given in milli-
metres (mm). Spatial increments of the main and subgrids are ∆sa = 50 mm and
∆sb = 0.505 mm. Subgridding ratio r = 99. Symbol ki shows the direction of propa-
gation of the incident wave.

4.3 Total-Field/Scattered-Field Technique

This section provides a brief introduction to the Total-Field/Scattered-Field (TF/SF)

technique. It is important to understand the concept of the TF/SF scheme, since it

plays a crucial role in the Huygens Subgridding approach. Mathematical formula-

tion of the TF/SF algorithm is explained in 1D in Section 4.3.3.

4.3.1 Introduction

According to the Total-Field/Scattered-Field (TF/SF) theory [139, 140] the physical

total field Etot , Htot can be decomposed into a sum of incident and scattered fields:

Etot = Ei nc +Esct , Htot = Hi nc +Hsct , (4.4)

where Ei nc , Hi nc are the incident-wave fields assumed to be known at all spatial

locations and all time moments of the FDTD space-time grid. Incident fields are the

fields that would be present in vacuum, i.e. in the empty simulation domain with

no materials of any kind. Scattered-wave fields Esct , Hsct , assumed to be unknown
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initially, are the result of an interaction between the incident wave and materials in

the simulation domain [16].

Connecting surface

Plane wave source

Scattered field

Interacting structure Lattice truncation

Total field

Figure 4.4: Total-field/scattered-field zoning [16]

Using the TF/SF technique the Yee simulation space can be zoned into the TF

and SF regions. Figure 4.4 presents the TF and SF regions in the FDTD simulation

domain. Elliptical interacting structure is placed inside of the TF zone. TF region

in the centre of the domain contains the fields generated by the incident and the

scattered waves. Connecting surface is a non-physical virtual surface connecting

the TF and SF zones. Connecting surface bounds the TF region and serves as an

incident wave source. SF region surrounds the TF. Both TF and SF region values

are assumed to be stored in computer memory. In SF region the FDTD algorithm

operates with the SF values only. No incident wave is computed in the SF zone. Fi-

nally, the lattice truncation surrounds the SF region. Usually an Absorbing Bound-

ary Condition (ABC) acts as a lattice truncation. The purpose of ABC is to simulate

a numerical wave propagation to infinity with zero or almost zero reflection.

In context of HSG connecting interface separating the simulation domain into

the Total-Field/Scattered-Field zones is the Huygens Surface. In accordance with

the equivalence theorem the electromagnetic current densities induced onto the

Huygens Surface will represent electromagnetic fields radiated inside or outside of

the surface. Location of the field source determines the location of the Scattered

Field zone, i.e. the Scattered Field zone will always contain the source.

Consider the Outer and Inner Huygens Surfaces depicted in Figure 4.5. The left-

most sphere represents the Outer Huygens Surface. An excitation source will be

located inside of this sphere. The SF region will be positioned inside and the TF

outside of the sphere. Via the equivalence theorem all the field radiated from inside
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Figure 4.5: Inner and Outer Huygens Surfaces. Black arrows show the direction of
electromagnetic field radiation in the HSG.

and landing onto the surface of the sphere can be propagated further by the sphere.

Purpose of the Outer Huygens Surface is to transfer the influence from the subgrid

to the main grid of the HSG.

Small sphere in the centre of Figure 4.5 illustrates the Inner Huygens Surface.

In this case the source is located outside of the sphere. Therefore, the TF region

is outside and the SF region is inside of the central sphere. Electromagnetic fields

landing on the surface from outside will be propagated by the sphere inside of the

domain. The Inner Huygens Surface passes the influence from the main into the

subgrid of the HSG.

The rightmost hemisphere in Figure 4.5 shows the Outer and Inner Huygens Sur-

faces inside of each other. This surface positioning is adopted in the HSG method.

Hence, a single TF/SF interface is represented by two Huygens Surfaces, where each

surface deals with a one-directional field radiation (main-to-subgrid in case of the

Inner Surface and sub-to-main grid in case of the Outer Surface).

It is important to notice that the TF/SF positions depend on the point of view. In

case of the Outer Surface the TF will be outside and the SF—inside of the big sphere.

In case of the Inner Surface the SF will be outside and the TF—inside of the small

sphere.

4.3.2 Advantages of TF/SF Technique

Application of the TF/SF techniques has a number of advantages:
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Connecting surface allows to create highly customised time waveform with user-

defined duration, angle of incidence and angle of polarisation. Numerical in-

cident wave is confined to the TF region only. Connecting surface, transparent

to outgoing numerical waves, enables a well-defined SF zone.

Simple programming of interaction structures is possible with the TF/SF technique.

Incident field needs to be calculated only along the connecting surface bet-

ween the TF and SF regions.

Wide computational dynamic range1 of the TF/SF technique allows direct calcu-

lation of the low field amplitude levels in the TF region. Typically the FDTD

methods implement the SF only approach. In order to calculate the low field

amplitude levels necessary in certain CEM problems, conventional SF only

FDTD methods require an addition of the incident field to the scattered field.

The field addition may result in high amount of numerical errors [16].

Improved ABC functionality can be achieved with the TF/SF scheme, while SF re-

gion serves as a buffering zone between the TF area and lattice termination.

Far-field response calculation can be simplified by placing the near-to-far field trans-

formation surface inside the SF zone.

4.3.3 Mathematical Formulation in 1D

Consider Figure 4.6 that shows a 1D x-directed cut through the 2D surface presented

in Figure 4.4.

The following free-space finite-difference expression for Ez in 1D will be valid

for both all total or all scattered field components:

E n+1
z (i ) = E n

z (i )+ ∆t

ε0∆x

(
H

n+ 1
2

y
(
i + 1

2

)−H
n+ 1

2
y

(
i − 1

2

))
. (4.5)

Calculation at left-side with x = iL

However, at the left-side point iL on the connecting surface the situation is different.

According to Figure 4.6 component Ez at the iL is located in the TF region. But the

1Computational dynamic range is the maximum to minimum ratio of an accurately computed TF

level in the space lattice [16].
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Scattered fieldTotal fieldScattered field

Ez, sct Ez, tot Ez, tot Ez, tot Ez, tot Ez, tot Ez, sct

Hy, sct xHy, tot Hy, tot Hy, tot Hy, tot Hy, sct

iL iRiL −1 iL +1 iR −1 iR +1

iL −1/2 iL +1/2 iR −1/2 iR +1/2

Figure 4.6: Total-field/scattered-field component locations, 1D [16]. Upwards-di-
rected red arrows denote electric field components Ez and blue crosses stand for
magnetic field components Hy . Indices tot and sct signify total and scattered re-
gion fields. Coordinates iL and iR illustrate the locations of the left-side and right-
side connecting surfaces. Electric and magnetic field components are offset by a
half space-step 1/2. TF region is located in the middle of the figure and is sur-
rounded by the SF region.

two magnetic field components required for the E n+1
z, tot (iL) calculation are in the TF

and SF regions:

E n+1
z, tot (iL) = E n

z, tot (iL)+ ∆t

ε0∆x

(
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(
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2
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(
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2

))
. (4.6)

Equation (4.6) is inconsistent, since the calculation of TF region component relies

on the difference of TF and SF region components. To obtain a TF region value only

TF region values must be used. Therefore, to achieve the TF balance another term

is added to (4.6):

E n+1
z, tot (iL) = E n
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since
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Similar situation occurs in the magnetic field calculation at the left-side point

iL − 1
2 :

H
n+ 1

2
y, sct

(
iL − 1

2

)= H
n− 1

2
y, sct

(
iL − 1

2

)+ ∆t

µ0∆x

(
E n

z, tot (iL)−E n
z, sct (iL −1)

)
, (4.9)



90 CHAPTER 4. HUYGENS SUBGRIDDING

SF value H
n+ 1

2
y, sct

(
iL − 1

2

)
calculation (4.9) is inconsistent, since it involves the diffe-

rence of TF and SF region values. For consistency the SF value must be computed

based on the difference of SF values only. Therefore, equation (4.9) is corrected by

subtracting the incident field term E n
z, i nc (iL):

H
n+ 1

2
y, sct

(
iL − 1

2

)= H
n− 1

2
y, sct

(
iL − 1

2

)+ ∆t

µ0∆x

(
E n

z, tot (iL)−E n
z, i nc (iL)−E n

z, sct (iL −1)
)

,

(4.10)

since

E n
z, tot (iL)−E n

z, i nc (iL) = E n
z, sct (iL) . (4.11)

Calculation at right-side with x = iR

Analogously at the right-side point iR electric field component E n+1
z, tot (iR ) is obtained

as:

E n+1
z, tot (iR ) = E n

z, tot (iR )+ ∆t

ε0∆x

(
H

n+ 1
2

y, sct

(
iR + 1

2

)+H
n+ 1

2
y, i nc

(
iR + 1

2

)−H
n+ 1

2
y, tot

(
iR − 1

2

))
,

(4.12)

since

H
n+ 1

2
y, sct

(
iR + 1

2

)+H
n+ 1

2
y, i nc

(
iR + 1

2

)= H
n+ 1

2
y, tot

(
iR + 1

2

)
. (4.13)

Magnetic field component H
n+ 1

2
y, sct

(
iR + 1

2

)
on the connecting surface at location

iR + 1
2 is calculated in the following manner:

H
n+ 1

2
y, sct

(
iR + 1

2

)= H
n− 1

2
y, sct

(
iR + 1

2

)+ ∆t

µ0∆x

(
E n

z, sct (iR +1)−E n
z, tot (iR )+E n

z, i nc (iR )
)

,

(4.14)

since

−E n
z, tot (iR )+E n

z, i nc (iR ) =−E n
z, sct (iR ) . (4.15)

4.4 Equivalent Currents at Huygens Surfaces

4.4.1 Inner Surface

Refer to the equivalence theorem and Figure 4.2b presented in Section 4.2. Consider

electric and magnetic fields at the IS location in the main grid Ea (I S) ,Ha (I S) .

Electric and magnetic fields Ea (I S) ,Ha (I S) are enforced by equivalent currents

Kb (I S) ,Lb (I S) at IS locations in the subgrid:
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Kb (I S) = n×Ha (I S) , (4.16)

Lb (I S) =−n×Ea (I S) . (4.17)

In this case the unit vector n is normal to IS and is oriented towards the work-

ing region of the subgrid (region 5 in Figure 4.2b). Therefore, fields entering the

non-working region of the main grid (region 2 in Figure 4.2b) are radiated into the

working region of the subgrid. Identical approach is applied at the OS [101].

ax

Ey(0)Ey(−1)

Hz(−1/2) Hz(1/2)

Incident wave Huygens surface

Scattered field Total field

Figure 4.7: Huygens surface, 1D [102]

For a better understanding of the Huygens Subgridding functionality consider a

hypothetical Huygens surface presented in 1D in Figure 4.7. An analytical incident

wave propagates from left to right of Figure 4.7. Magnetic field component Hz
(−1

2

)
is located in the Scattered Field (SF) region and the electric field component Ey (0)

is positioned in the Total Field (TF) region. According to the TF/SF theory [16] the

incident field contribution is either added to or subtracted from the normal FDTD

update equation:

E n+1
y (0) = E n

y (0)− ∆t

ε0∆x

(
H

n+ 1
2

z
(1

2

)−H
n+ 1

2
z

(−1
2

)−H
n+ 1

2
z, i nc

(−1
2

))
, (4.18)

H
n+ 3

2
z

(−1
2

)= H
n+ 1

2
z

(−1
2

)− ∆t

µ0∆x

(
E n+1

y (0)−E n+1
y, i nc (0)−E n+1

y (−1)
)

. (4.19)

where H
n+ 1

2
z, i nc

(−1
2

)
is the incident Hz field at time moment n+ 1

2 and spatial location

−1
2 and E n+1

y, i nc (0) is the incident field Ey at time moment n+1 and spatial location 0.

Refer to Figure 4.8 to analyse the real HSG Inner Surface functionality. The key

difference between the cases presented in Figures 4.7 and 4.8 is that the analytical

wave is replaced with a discretised wave radiating from the FDTD main grid into

the FDTD subgrid. Subgrid field advancement at the two nodes closest to the IS
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bx

ax

H (−1/2)za Hza (itp) E (0)ya Hza (1/2)

H (−1/2)zb E yb(0) H zb(1/2)E (−1)yb

Incident wave

Huygens Inner Surface

Scattered field Total field

Figure 4.8: Inner Surface, 1D [102]. This figure corresponds to the IS on the left
hand-side of Figure 4.2.

interface is governed by the following equations:

E n+m
yb (0) = E n+m−1

yb (0)− ∆tb

ε0∆xb

(
H

n+m− 1
2

zb

(1
2

)−H
n+m− 1

2
zb

(−1
2

)−H
n+m− 1

2
za

(
i t p

))
,

(4.20)

H
n+m+ 1

2
zb

(−1
2

)= H
n+m− 1

2
zb

(−1
2

)− ∆tb

µ0∆xb

(
E n+m

yb (0)−E n+m
y a (0)−E n+m

yb (−1)
)

, (4.21)

where m is an integer iterator on the subgrid time loop, such that m ∈ [1,r ]. Time

in (4.20) and (4.21) is advanced in the subgrid time-steps. Since Eyb (0) in Figure 4.8

is located in the TF region, the incident field value of H
n+m− 1

2
za

(
i t p

)
in (4.20) is re-

quired to balance the scattered field value of H
n+m− 1

2
zb

(−1
2

)
. Incident field compo-

nent H
n+m− 1

2
za

(
i t p

)
in (4.20) is identical to H

n+ 1
2

z, i nc

(−1
2

)
in (4.18) and provides an

elegant mechanism to inject the main grid field influence into the subgrid.

Similar action occurs in (4.21). In Figure 4.8 magnetic field component Hzb
(−1

2

)
is located in the SF region and is calculated in (4.21) using the difference of TF elec-

tric field component E n+m
yb (0) and SF electric field component E n+m

yb (−1). There-

fore, an incident electric field component E n+m
y a (0) is required to balance the TF/SF

relation. Component E n+m
y a (0) is identical to E n+1

y, i nc (0) in (4.19) and introduces the

main grid field influence to the subgrid.

Figure 4.8 shows that the node H
n+m− 1

2
za

(
i t p

)
is non-existent in the main grid
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at the spatial location i t p and the time moment n +m − 1
2 . Therefore, this node is

obtained in two sequences of interpolations, one on space and one on time. Spatial

interpolation is given by (4.22):

H
n+ r

2
za

(
i t p

)= X1 H
n+ r

2
za

(−1
2

)+X2 H
n+ r

2
za

(1
2

)
, (4.22)

where

X1 =
r +1

2r
, X2 =

r −1

2r
. (4.23)

Symbol r denotes the subgridding ratio, while parameters X1 and X2 stand for

spatial interpolation coefficients. Hza nodes in (4.22) are the closest nodes to the

target node H
n+ r

2
za

(
i t p

)
from the left and the right sides at locations −1

2 and 1
2 . Ac-

cording to Figure 4.8 the node Hza
(−1

2

)
is located closer to Hza

(
i t p

)
, than the node

Hza
(1

2

)
. Interpolation coefficients X1 and X2 allow to increase the influence of the

closer node Hza
(−1

2

)
and decrease the influence of the farther node Hza

(1
2

)
onto

the target value of Hza
(
i t p

)
, e.g. in case of r = 5 the spatial interpolation coeffi-

cients will be X1 = 0.6 and X2 = 0.4 and the target node Hza
(
i t p

)
will consist of 60%

influence of the closer node Hza
(−1

2

)
and 40% influence of the farther node Hza

(1
2

)
.

After the value of H
n+ r

2
za

(
i t p

)
is determined by (4.22) this node is interpolated

on time to yield its values at subgrid time steps.

For m ∈ [
1, r

2 − 1
2

]
, m1 = m + r

2 − 1
2 ,Υ1 = r−m1

r andΥ2 = m1
r :

H
n+m− 1

2
za

(
i t p

)=Υ1 H
n− r

2
za

(
i t p

)+Υ2 H
n+ r

2
za

(
i t p

)
. (4.24)

For m ∈ [ r
2 + 1

2 , r
]
, m2 = m − r

2 − 1
2 ,Υ1 = r−m2

r andΥ2 = m2
r :

H
n+m− 1

2
za

(
i t p

)=Υ1 H
n+ r

2
za

(
i t p

)+Υ2 H
n+ 3r

2
za

(
i t p

)
. (4.25)

Figure 4.9 gives an example of the temporal interpolation of the main grid mag-

netic field component Hza
(
i t p

)
for the subgridding ratio r = 7. Two temporal inter-

polation cases specified by (4.24) and (4.25) are required because the subgrid values

of Hza
(
i t p

)
are located in between of two pairs of the main grid values. When r = 7

the first three interpolations will be calculated according to (4.24) and the next four

according to (4.25).

Figure 4.8 illustrates that the node E n+m
y a (0) exists at the spatial location 0. Spa-

tial interpolation is not necessary, since the main grid electric field values coincide

with the subgrid values. Therefore, only temporal interpolation has to be applied to
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H za (itp) H za (itp) H za (itp)

t b−7/2 7/2 21/20 7

m ∈ [1, 3], m1 ∈ [4, 6] m ∈ [4, 7], m2 ∈ [0, 3]

Υ1 ∈ [3/7, 2/7, 1/7] Υ1 ∈ [1, 6/7, 5/7, 4/7]

Υ2 ∈ [4/7, 5/7, 6/7] Υ2 ∈ [0, 1/7, 2/7, 3/7]

Figure 4.9: Temporal interpolation of Hza
(
i t p

)
for subgridding ratio r = 7. Large

hollow circles show the main grid Hza
(
i t p

)
component values on the subgrid time

axis tb . Small filled circles denote the interpolated values of Hza
(
i t p

)
at subgrid

time-steps. Vertical bars illustrate the integer subgrid time-steps. Values of 0 and 7
highlight the integer subgrid time-steps, while the main grid component locations
are denoted by the fractions −7/2, 7/2, 21/2. For the sake of simplicity the main grid
time step n = 0.

E n+m
y a (0) to obtain the electric field values at the subgrid time-steps.

For m ∈ [1, r ],Υ1 = r−m
r andΥ2 = m

r :

E n+m
y a (0) =Υ1 E n

y a (0)+Υ2 E n+r
y a (0) . (4.26)

Figure 4.10 shows the temporal interpolation of the main grid electric field com-

ponent Ey a (0). Subgrid values are positioned in between of only two main grid va-

lues. Temporal interpolation coefficients Υ1,Υ2 control the amount of each main

grid component influence. Interpolation coefficients change their values depend-

ing on the subgrid time-step. The closer a requested Ey a (0) value is to a real main

grid value, the bigger is the corresponding interpolation coefficient. For example in

case of m = 2,Υ1 = 5/7 andΥ2 = 2/7. CoefficientΥ1 >Υ2, since the requested value

of Ey a (0) is closer to time-step 0, than to time-step 7.

Temporal interpolations (4.24) to (4.26) use the future time values of the elec-

tric and magnetic fields E n+r
y a (0) and H

n+ r
2

za
(
i t p

)
, H

n+ 3r
2

za
(
i t p

)
. These future time

values are called “precursors” and are easily obtained by the local electric and mag-

netic field updates in the main grid. Regular FDTD equations are used to calculate

precursors at the spatial points i t p and 0 only. Calculated precursor values will be

correct because of the OS–IS separation required by the HSG theory. The minimum

OS–IS separation equals to 2∆sa and 2∆ta . The OS–IS separation ensures that the

subgrid influence will be delayed and will reach the main grid only after 2 main grid

time steps. The physical separation between the OS and IS is a key feature of the
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t b

E ya (0)E ya (0)

70

m ∈ [1, 7]

Υ1 ∈ [6/7, 5/7, 4/7, 3/7, 2/7, 1/7, 0]

Υ2 ∈ [1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1]

Figure 4.10: Temporal interpolation of Ey a (0) for subgridding ratio r = 7. Large hol-
low circles show the main grid Ey a (0) component values on the subgrid time axis tb .
Small filled circles denote the interpolated values of Ey a (0) at subgrid time-steps.
Vertical bars illustrate the integer subgrid time-steps. Values of 0 and 7 highlight the
integer subgrid time-steps. For the sake of simplicity the main grid time step n = 0.

HSG method, which allows to avoid the field extrapolation on time [101, 102].

Since the starting point of the HSG algorithm can be chosen arbitrarily, it is pos-

sible to avoid the calculation of future precursor values. If the electric field values

Ea , Eb are assumed to be known at time-step n and the magnetic field values Ha , Hb

at time-steps n+ r
2 and n+ 1

2 , the HSG method does not require the future time-step

values of the field precursors as mentioned in (4.24) to (4.26). Due to a different

initial condition of the HSG algorithm the implementation is simplified. Precursor

values become only the spatial and temporal interpolations, with no local FDTD

field advance.

4.4.2 Outer Surface

Figure 4.11 presents the Outer Surface in 1D. Subgrid nodes exist at each space loca-

tion and each time moment, and overlap with the main grid nodes. Therefore, the

OS implementation is much simpler than the IS. Neither time nor space interpola-

tions are required for the OS calculation:

E n+r
y a (0) = E n

y a (0)− ∆ta

ε0∆xa

(
H

n+ r
2

za
(1

2

)−H
n+ r

2
za

(−1
2

)−H
n+ r

2
zb

( r
2

))
, (4.27)

H
n+ 3r

2
za

(1
2

)= H
n+ r

2
za

(1
2

)− ∆ta

µ0∆xa

(
E n+1

y a (1)−E n+1
yb (0)−E n+1

y a (0)
)

. (4.28)

According to Figure 4.11 the electric field value E n+r
y a (0) and the magnetic field
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E (0)ya Hza (1/2) E (1)ya

E yb(0) H zb (r/2) E yb (r)

Incident wave
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bx

Huygens Outer Surface

Scattered field Total field

Figure 4.11: Outer Surface, 1D [102]. This figure corresponds to the OS on the right
hand-side of Figure 4.2.

value H
n+ r

2
za

(−1
2

)
are located in the SF region. Electric field E n+r

y a (0) in (4.27) is calcu-

lated using the TF and SF magnetic field values H
n+ r

2
za

(1
2

)
and H

n+ r
2

za
(−1

2

)
. To balance

the TF/SF relation in (4.27) the incident magnetic field H
n+ r

2
zb

( r
2

)
is subtracted from

the main grid magnetic field difference. The subgrid influence to the main grid is

passed with the subtraction of H
n+ r

2
zb

( r
2

)
.

Magnetic field at the OS is updated in a similar manner. In Figure 4.11 com-

ponents H
n+ 3r

2
za

(1
2

)
, E n+1

y a (1) are located in the TF region and component E n+1
y a (0)

is positioned in the SF region. To balance the TF/SF relation in (4.28) the inci-

dent electric field E n+1
yb (0) of the subgrid is subtracted from the main grid electric

field difference. The electric equivalent current from the subgrid to the main grid is

transferred with the E n+1
yb (0).

4.5 Huygens Subgridding Algorithm

Algorithm 3 describes the HSG method operation within one main grid iteration.

Symbol “*” denotes all spatial locations in the simulation domain. Indices a and b

stand for the main and subgrids respectively. Variable m is used to iterate over the

subgrid time loop. Subgridding ratio is r. For the sake of clarity value re-arrange-

ment, source excitation, value output and spatial domain termination with the ABC

are not shown in Algorithm 3.

The HSG algorithm consists of two symmetric parts, where the subgrid time
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1: calc Ea (∗)
2: iface Ea (I S)

3: for m ∈ [1, r−1
2 ] do

4: calc Hb (∗)
5: infl I S : Ea (I S) → Hb (I S)
6: calc Eb (∗)
7: infl I S : Ha (I S) → Eb (I S)
8: end for

9: calc Hb (∗)
10: infl I S : Ea (I S) → Hb (I S)
11: infl OS : Hb (OS) → Ea (OS)

12: calc Ha (∗)
13: iface Ha (I S)

14: for m ∈ [1, r−1
2 ] do

15: calc Eb (∗)
16: infl I S : Ha (I S) → Eb (I S)
17: calc Hb (∗)
18: infl I S : Ea (I S) → Hb (I S)
19: end for

20: calc Eb (∗)
21: infl I S : Ha (I S) → Eb (I S)
22: infl OS : Eb (OS) → Ha (OS)

Algorithm 3: HSG pseudocode. Abbreviations “calc”, “iface” and “infl” stand for cal-
culate, calculate interface and calculate influence. Calculate is a regular FDTD up-
date, calculate interface is the spatial and temporal interpolation at the OS–IS inter-
face, and calculate influence is the equivalent magnetic or electric current transfer
via the OS or IS.

loops (lines: 3–8, 14–19) are inserted after the electric and magnetic field calcula-

tions in the main grid. These loops are used in order to synchronise the subgrid

field updates with the main grid. An important point to notice is the IS influence

injection into the subgrid. IS equivalent current is always injected straight after the

electric or magnetic field calculation in the subgrid. Main grid field interpolations

at the IS interface (lines: 2 and 13) are calculated after the ordinary Ea (∗) and Ha (∗)

updates. Interpolated values of Ea (I S) and Ha (I S) will be used at each IS current

injection into the subgrid (lines: 5, 10, 18 and 7, 16, 21).

Since the subgridding ratio is an odd number each time loop of the subgrid is

complemented with an additional Hb (∗) or Eb (∗) calculation (lines: 9, 10 and 20,

21). These additional calculations occur because half of the subgrid components

are calculated in the first symmetric part of the HSG algorithm (lines: 1 to 11) and

half of the subgrid components are calculated in the second half of the HSG scheme

(lines: 12 to 22). The OS influence is injected into the main grid at the end of each

symmetric part (lines: 11 and 22). The OS injection happens at last because it is

only valid after the subgrid has synchronised with the main grid calculation and the

corresponding temporal value of the Hb (OS) or Eb (OS) node is available.

Figure 4.12 illustrates the HSG method’s advancement on time. One main grid

time iteration is shown in Figure 4.12. Figure 4.12 is also symmetric, where its left
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part corresponds to the left part of Algorithm 3 and the right part to the right part

of Algorithm 3. Upper part of Figure 4.12 highlights the main grid time domain and

the lower part—the subgrid time domain. Subgridding ratio of 5 is used throughout

the figure. Thin horizontal and diagonal lines with arrows show the HSG computa-

tion order.

t b

t a

H
n

H
n+1

E
n+1/2

h h h h h heeeee

Figure 4.12: HSG advancement on time. Subgridding ratio r = 5. Hollow points mark
the electric and filled points—the magnetic fields. Capital letters denote fields in the
main and small letters—in the subgrid. Vertical dotted lines show the coinciding
field values.

First the E
n+ 1

2
a is calculated in the main grid, then HSG switches to the subgrid.

Calculation in the subgrid is always delayed. Subgrid synchronises with the main

grid at each main grid half time-step. After five subgrid iterations (at the end of

the first HSG symmetric part) the algorithm switches back to the main grid. When

the magnetic field H n+1
a is calculated the HSG reverts to the subgrid to finish the

remaining subgrid iterations. At the end of the process shown in Figure 4.12 the

main grid has advanced one complete time-step and the subgrid—five complete

time-steps.

4.6 Instability of Huygens Subgridding

4.6.1 Instability Analysis

Stability is a defined system property. Most common definitions of stability refer to

energy, while in stable system the energy remains bounded. Stability is also a pro-

perty of a numerical method. Energy computed with the discrete solution exhibits

an exponential growth, where the speed of energy growth relates to the exponent

of the e-function. In case of small exponents the energy growth is small and the

instability is not visible until a certain time moment.
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Stability of a subgridding algorithm is a critical issue affecting the accuracy of

the final results. Unfortunately, the HSG method is naturally unstable. In the HSG

scheme the instability is visible after approximately 1000 time-steps in 1D with r =
99 and the subgrid size 1880 subgrid cells long [99], 1000–2000 in 2D with r = 11 and

the subgrid size of 550×1 subgrid cells [101], and 4000–5000 in 3D with r = 5 and

the subgrid size of 80×80×160 [102]. Bérenger suggests that the visibility of HSG

instability depends on the subgridding ratio r, size of temporal increments ∆ta ,∆tb

and presence of objects in the main and subgrids [99].

Instability in the HSG method is expressed in periodic artificial oscillations of the

signal curve that grow over time. Eventually the instability oscillations will outgrow

and eliminate the original signal. Period of instability oscillations is identical for

both main and subgrids and depends on ∆sa and slightly on the ratio c∆ta
∆sa

.

Numerical dispersion in the FDTD method in 1D is governed by the following

equation:

sin

(
ω∆t

2

)
= c∆t

∆x
sin

(
kx∆x

2

)
, (4.29)

where c∆t <∆x. At low frequencies kx is a real number and the propagating waves

are travelling waves. At high frequencies the term sin
(

kx∆x
2

)
> 1, therefore kx is

a complex number and propagating waves are evanescent waves. Transition fre-

quency between the two regimes is:

ftr =
1

π∆t
arcsin

(
c∆t

∆x

)
. (4.30)

Above ftr the wave magnitude decreases with distance, but the wavelength λ

does not depend on the wave frequency fw and equals λ = 2∆x at any frequency

beyond ftr . It appears that the frequencies of instability are limited to a narrow

band of frequencies centred at transition frequency ftr of the main grid [99].

4.6.2 Filtering

Since the wavelength of unstable frequencies is constant (λ = 2∆x) a cosine filter2

can be applied to the equivalent IS currents in order to reduce the instability:

2Low pass filtering dissipates the system energy. The energy dissipation with a sufficiently high

rate can make any numerical method stable.
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Ea (i a1) = Ea (i a1−1)+Ea (i a1)

2
, Ha

(
i t p

)= Ha
(
i t p −1

)+Ha
(
i t p

)
2

. (4.31)

Figure 4.8 shows the main grid field Ea (i a1) and Ha
(
i t p

)
locations used in (4.31).

Ea (i a1) is the closest field location to the IS, i.e. in Figure 4.8 it is Ey a (0) . For wave

number kx the averaging (4.31) is equivalent to a multiplication of the wave magni-

tude with:

P (kx) = exp
(
kx∆xa

)+1

2
= exp

(
kx∆xa

2

)
cos

(
kx∆xa

2

)
. (4.32)

Higher order filters can be obtained by cascading (4.31), e.g. a three point filter

is:

Ea (i a1) = 1

4
Ea (i a1−1)+ 1

2
Ea (i a1)+ 1

4
Ea (i a1+1) , (4.33)

Ha
(
i t p

)= 1

4
Ha

(
i t p −2

)+ 1

2
Ha

(
i t p −1

)+ 1

4
Ha

(
i t p

)
. (4.34)

z

y

x

Figure 4.13: Filtering in HSG, summary. Participating elements are shown in blue
and the target element—in red. Filled circles give examples of the participating
nodes. Target point is calculated in three steps: (i) three planes of 9 points each
are reduced into a centre plane on the left-most figure, (ii) three lines of 3 points
each are averaged into a middle line on the central figure and (iii) three points on
the central line and averaged into a single target point on the right-most figure.

Figure 4.13 gives a visual representation of the three point filter specified by (4.33)

and (4.34). The general filtering process consists of three steps of averaging. First,

27 initial points surrounding the target point3 are used to calculate the plane of 9

points, i.e. three planes of 9 points are averaged into a single plane of 9 points in
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the centre of the cube. Then the central plane is averaged and reduced to a line, i.e.

three lines with 3 points each are averaged into a middle line of 3 points. Finally,

the middle line of three points is averaged to a central point to obtain the requested

result.

Figures 4.14a to 4.14c describe the averaging process in detail: 27 initial points

are reduced from a volume to a plane of 9 points (Figure 4.14a), then from a plane to

a line of 3 points (Figure 4.14b) and finally from a line to a single point (Figure 4.14c).

Using the one point filter (4.31) in the 1D HSG approach delays the instability

from 1000 to 40000 time-steps for the subgrid size of 1880 subgrid cells and r =
99 [99]. The three point filter (4.33) and (4.34) completely suppresses the instability

(tested up to 106 main grid iterations) [99].

4.7 Mathematical Formulation

This section presents the mathematical formulation of the HSG method in 3D.

4.7.1 Magnetic Field Calculation

To simplify the FDTD method’s equations for magnetic field calculation the follow-

ing coefficients were defined:

Z1g
(
i , j , k

)= 1−ζ1g
(
i , j , k

)
1+ζ1g

(
i , j , k

) , Z2g
(
i , j , k

)= ζ2g
(
i , j , k

)
1+ζ1g

(
i , j , k

) , (4.35)

where

ζ1g
(
i , j , k

)= σ∗
g

(
i , j , k

)
∆tg

2µg
(
i , j , k

) , ζ2g
(
i , j , k

)= ∆tg

µg
(
i , j , k

) . (4.36)

Symbol g in (4.37) to (4.39) and (4.42) to (4.44) denotes the grid type, g ∈ [a,b].

Magnetic field components have to be calculated for both main and subgrids using

the same equations:

H n
xg

(
i , j , k

)= Z1g
(
i , j , k

)
H n−1

xg

(
i , j , k

)
3Target point is the requested point, that lies on the IS and will participate in the main to sub-

grid influence calculation. In case of a three point filter the target point is obtained by averaging 27

surrounding points.
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z

y
x

1/2 1/41/4=

(a) Filtering in HSG, volume → plain reduction. Three planes of 9 points each are av-
eraged into a central plane shown in red. Each node on the central plane is obtained
by using the averaging coefficients of 1/4, 1/2, 1/4.

z

y
x

1/41/4 1/2=

(b) Filtering in HSG, plane → line reduction. Three lines of 3 points each are aver-
aged into a middle line depicted in red. Three points on the middle line are calcu-
lated using respective nodes of the participating lines multiplied by filtering coefficients
1/4, 1/2, 1/4.

z

y
x

1/2 1/41/4=

(c) Filtering in HSG, line → point reduction. Target point (highlighted in red) on the
middle line of the central plane is obtained by averaging three points with the coeffi-
cients 1/4, 1/2, 1/4.

Figure 4.14: Filtering in HSG. Participating planes, lines and points are shown in
blue colour and target planes, lines and points—in red.

+Z2g
(
i , j , k

)


E n
y g

(
i , j , k +1

)−E n
y g

(
i , j , k

)
∆zg

−
E n

zg

(
i , j +1, k

)−E n
zg

(
i , j , k

)
∆yg

−M n
sr c, xg

(
i , j , k

)


, (4.37)
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where i ∈ [igmi n +1, igmax −1]; j ∈ [ jgmi n , jgmax −1]; k ∈ [kgmi n ,kgmax −1];

H n
y g

(
i , j , k

)= Z1g
(
i , j , k

)
H n−1

y g

(
i , j , k

)

+Z2g
(
i , j , k

)


E n
zg

(
i +1, j , k

)−E n
zg

(
i , j , k

)
∆xg

−
E n

xg

(
i , j , k +1

)−E n
xg

(
i , j , k

)
∆zg

−M n
sr c, y g

(
i , j , k

)


, (4.38)

where i ∈ [igmi n , igmax −1]; j ∈ [ jgmi n +1, jgmax −1]; k ∈ [kgmi n ,kgmax −1];

H n
zg

(
i , j , k

)= Z1g
(
i , j , k

)
H n−1

zg

(
i , j , k

)

+Z2g
(
i , j , k

)


E n
xg

(
i , j +1, k

)−E n
xg

(
i , j , k

)
∆yg

−
E n

y g

(
i +1, j , k

)−E n
y g

(
i , j , k

)
∆xg

−M n
sr c, zg

(
i , j , k

)


, (4.39)

where i ∈ [igmi n , igmax −1]; j ∈ [ jgmi n , jgmax −1]; k ∈ [kgmi n +1,kgmax −1].

4.7.2 Electric Field Calculation

To simplify the FDTD method’s equations for electric field calculation analogous

coefficients were defined:

Γ1g
(
i , j , k

)= 1−γ1g
(
i , j , k

)
1+γ1g

(
i , j , k

) , Γ2g
(
i , j , k

)= γ2g
(
i , j , k

)
1+γ1g

(
i , j , k

) , (4.40)

where

γ1g
(
i , j , k

)= σg
(
i , j , k

)
∆tg

2εg
(
i , j , k

) , γ2g
(
i , j , k

)= ∆tg

εg
(
i , j , k

) . (4.41)
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Also electric field components are calculated for both main and subgrids using iden-

tical equations:

E n
xg

(
i , j , k

)= Γ1g
(
i , j , k

)
E n−1

xg

(
i , j , k

)

+Γ2g
(
i , j , k

)


H n
zg

(
i , j , k

)−H n
zg

(
i , j −1, k

)
∆yg

−
H n

y g

(
i , j , k

)−H n
y g

(
i , j , k −1

)
∆zg

−J n
sr c, xg

(
i , j , k

)


, (4.42)

where i ∈ [igmi n , igmax −1]; j ∈ [ jgmi n +1, jgmax −1]; k ∈ [kgmi n +1,kgmax −1];

E n
y g

(
i , j , k

)= Γ1g
(
i , j , k

)
E n−1

y g

(
i , j , k

)

+Γ2g
(
i , j , k

)


H n
xg

(
i , j , k

)−H n
xg

(
i , j , k −1

)
∆zg

−
H n

zg

(
i , j , k

)−H n
zg

(
i −1, j , k

)
∆xg

−J n
sr c, y g

(
i , j , k

)


, (4.43)

where i ∈ [igmi n +1, igmax −1]; j ∈ [ jgmi n , jgmax −1]; k ∈ [kgmi n +1,kgmax −1];

E n
zg

(
i , j , k

)= Γ1g
(
i , j , k

)
E n−1

zg

(
i , j , k

)

+Γ2g
(
i , j , k

)


H n
y g

(
i , j , k

)−H n
y g

(
i −1, j , k

)
∆xg

−
H n

xg

(
i , j , k

)−H n
xg

(
i , j −1, k

)
∆yg

−J n
sr c, zg

(
i , j , k

)


, (4.44)
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where i ∈ [igmi n +1, igmax −1]; j ∈ [ jgmi n +1, jgmax −1]; k ∈ [kgmi n ,kgmax −1].

Electric Field Update at the Excitation Source Location

In this section i = isr c , j = jsr c , k = ksr c and g ∈ [a, b]. In case of the hard source

excitation the electric field value at the source location i , j , k is overwritten with:

E n
g

(
i , j , k

)=−Γ2g
(
i , j , k

)
J n

sr c, g

(
i , j , k

)
. (4.45)

In case of the soft source excitation the electric field value is calculated according

to (4.42) to (4.44).

4.7.3 Field Component Re-Arrangement

Field re-arrangement described in this section is necessary for the normal FDTD

field updates, Absorbing Boundary Condition calculation and the main grid fields

spatial and temporal interpolations at the IS. Symbol “*” stands for the entire spatial

domain. Left-directed horizontal arrow “←−” specifies the field value transfer and

storage.

Magnetic Field Components in Main Grid

Magnetic field components at the IS in the main grid are re-arranged in order to

preserve the previous time-step values n − 1 needed for spatial and temporal in-

terpolations. For the sake of clarity only one spatial coordinate is specified. This

coordinate defines the plane, where the given magnetic field components reside.

For example in case of H n−1
xa

(
jbI L

)
the magnetic field components H n−1

xa lie on the

plane jb = jbI L . Subgrid coordinates in the main grid components are explained by

a subgrid granularity required by the main grid components at the IS. Notions of IL

and IR stand for Inner Left and Inner Right Inner Surfaces. IL and IR are the same

as upper and lower or minimum and maximum IS planes. The other coordinates in

H n−1
xa

(
jbI L

)
notation are assumed to span the entire IS range, e.g. in H n−1

xa

(
jbI L

)
the

other coordinate ranges are ib ∈ [ibI L , ibI R ] , kb ∈ [kbI L ,kbI R ]:

H n−1
xa (∗) ←− H n

xa (∗) , H n−1
xa

(
jbI L

)←− H n
xa

(
jbI L

)
,

H n−1
y a (∗) ←− H n

y a (∗) , H n−1
xa

(
jbI R

)←− H n
xa

(
jbI R

)
, (4.46)

H n−1
za (∗) ←− H n

za (∗) , H n−1
xa (kbI L) ←− H n

xa (kbI L) ,
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H n−1
xa (kbI R ) ←− H n

xa (kbI R ) ,

H n−1
y a (ibI L) ←− H n

y a (ibI L) , H n−1
za (ibI L) ←− H n

za (ibI L) ,

H n−1
y a (ibI R ) ←− H n

y a (ibI R ) , H n−1
za (ibI R ) ←− H n

za (ibI R ) , (4.47)

H n−1
y a (kbI L) ←− H n

y a (kbI L) , H n−1
za

(
jbI L

)←− H n
za

(
jbI L

)
,

H n−1
y a (kbI R ) ←− H n

y a (kbI R ) , H n−1
za

(
jbI R

)←− H n
za

(
jbI R

)
.

Magnetic field component re-arrangement in the entire simulation domain “*” can

be avoided in the implementation, since at the moment of H n
a update, the value

H n−1
a is still valid. In other words only one array is required to store H n

xa and H n−1
xa

values. Likewise the storage of Hy a and Hza components requires only one array

each. The re-arrangement procedures for the entire simulation domain are given

for the completeness of mathematical formulation. Main grid component re-ar-

rangement at the IS should occur prior to the new IS value calculation.

Magnetic Field Components in Subgrid

Magnetic field components in the subgrid are re-arranged before normal FDTD up-

date equations:

H n−1
xb (∗) ←− H n

xb (∗) ,

H n−1
yb (∗) ←− H n

yb (∗) ,

H n−1
zb (∗) ←− H n

zb (∗) .

(4.48)

These re-arrangement procedures can be spared during the implementation. Re-

arrangement process is shown only for mathematical completeness.

Electric Field Components in Main Grid

Electric field components in the entire simulation domain “*” and at the IS are pre-

served at time-step n − 1, since they are required in normal FDTD updates, and

spatial and temporal interpolations at the IS. Component re-arrangement notation

is the same as in the magnetic field re-arrangement procedure described in Sec-

tion 4.7.3:

E n−1
xa (∗) ←− E n

xa (∗) , E n−1
xa

(
jbI L

)←− E n
xa

(
jbI L

)
,
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E n−1
y a (∗) ←− E n

y a (∗) , E n−1
xa

(
jbI R

)←− E n
xa

(
jbI R

)
, (4.49)

E n−1
za (∗) ←− E n

za (∗) , E n−1
xa (kbI L) ←− E n

xa (kbI L) ,

E n−1
xa (kbI R ) ←− E n

xa (kbI R ) ,

E n−1
y a (ibI L) ←− E n

y a (ibI L) , E n−1
za (ibI L) ←− E n

za (ibI L) ,

E n−1
y a (ibI R ) ←− E n

y a (ibI R ) E n−1
za (ibI R ) ←− E n

za (ibI R ) , (4.50)

E n−1
y a (kbI L) ←− E n

y a (kbI L) , E n−1
za

(
jbI L

)←− E n
za

(
jbI L

)
,

E n−1
y a (kbI R ) ←− E n

y a (kbI R ) , E n−1
za

(
jbI R

)←− E n
za

(
jbI R

)
.

Similarly to the magnetic field, the electric field component re-arrangement in the

entire simulation domain “*” can be avoided during the implementation. Main grid

components at the IS should be re-arranged prior to the calculation of new main

grid values at the IS.

Electric Field Components in Subgrid

Electric field components in the subgrid are re-arranged before normal FDTD up-

date equations:

E n−1
xb (∗) ←− E n

xb (∗) ,

E n−1
yb (∗) ←− E n

yb (∗) ,

E n−1
zb (∗) ←− E n

zb (∗) .

(4.51)

Similarly to the main grid, these re-arrangement procedures can be bypassed during

the implementation.

4.7.4 Filtering

Filtering is optional. It is done prior to the spatial interpolation of the main grid

electric and magnetic field components at the Inner Huygens Surface (IS). There

are two varieties of filtering in one and in three dimensions (1D, 3D).

One-Dimensional Filtering

In one dimension filtering equations use the field values lying perpendicular to the

IS plane. Abbreviations used in this section include: IS ∈ [IL, IR], where IL and IR
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stand for Left Inner Surface and Right Inner Surface4, u, v, w are the auxiliary co-

ordinates, A is a 1D array of extracted field components, parameter d specifies the

amount of points extracted from the field array to the left and to the right from the

IS and ρ is the filtered value.

Electric Field Components

The cases construct below shows the electric field values extraction depending on

the IS location. Symbol “⊥” denotes perpendicularity, e.g. IS ⊥ y means that IS is

perpendicular to y-axis. Consider the first line of the cases construct below. In case

of Exa and IS ⊥ y , the coordinate of operation u equals to j . Parameter d specifies

the number of points in y direction, that are extracted to the left and to the right

from the IS, i.e. j ∈ [ jaI S−d , jaI S+d ]. The location of IS on y-axis jaI S lies in between

of the extracted values.

A (u) =



Exa
(
i , j , k

)
, IS ⊥ y ; u = j , j ∈ [ jaI S −d , jaI S +d ];

Exa
(
i , j , k

)
, IS ⊥ z; u = k, k ∈ [kaI S −d , kaI S +d ];

Ey a
(
i , j , k

)
, IS ⊥ z; u = k, k ∈ [kaI S −d , kaI S +d ];

Ey a
(
i , j , k

)
, IS ⊥ x; u = i , i ∈ [iaI S −d , iaI S +d ];

Eza
(
i , j , k

)
, IS ⊥ x; u = i , i ∈ [iaI S −d , iaI S +d ];

Eza
(
i , j , k

)
, IS ⊥ y ; u = j , j ∈ [ jaI S −d , jaI S +d ].

Filtering is done with (4.52) to (4.54). Only one equation has to be chosen for

value filtering. Major difference between the filtering equations consists in the total

number of points and the filtering coefficient values used. Computation burden

grows with the growth of parameter d .

3pt filtering, d = 1

ρ = 1

4
A (u −1)+ 1

2
A (u)+ 1

4
A (u +1) ; (4.52)

5pt filtering (i), d = 2

ρ = 1

4
(A (u −1)+ A (u)+ A (u +1))+ 1

8
(A (u −2)+ A (u +2)) ; (4.53)

4In HSG it is necessary to distinguish between the left and right sides of the IS, since the calcula-

tion equations are different for each side.
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5pt filtering (ii), d = 2

ρ = 3

8
A (u)+ 1

4
(A (u −1)+ A (u +1))+ 1

16
(A (u −2)+ A (u +2)) . (4.54)

Magnetic Field Components

Magnetic field components are filtered in a similar manner to the electric field.

Since magnetic field is shifted one half space step from the electric field, no mag-

netic field value exists exactly at the IS. Therefore, an exact magnetic field value at

the IS is obtained with two sequences of filtering, where the interpolation coeffi-

cients are:

X1 =
r +1

2r
, X2 =

r −1

2r
. (4.55)

These coefficients are the same as the spatial interpolation coefficients used in (4.22).

The main purpose of these coefficients is to control the amount of influence each

node contributes to the final value ρ. Coefficients X1, X2 increase the influence of

the closer node and decrease the influence of the farther node. Five point filtering

for the magnetic field components is not implemented.

A (u) =



Hxa
(
i , j , k

)
, IS ⊥ y ; u = j , j ∈ [ jaI S −d , jaI S +d ];

Hxa
(
i , j , k

)
, IS ⊥ z; u = k, k ∈ [kaI S −d , kaI S +d ];

Hy a
(
i , j , k

)
, IS ⊥ z; u = k, k ∈ [kaI S −d , kaI S +d ];

Hy a
(
i , j , k

)
, IS ⊥ x; u = i , i ∈ [iaI S −d , iaI S +d ];

Hza
(
i , j , k

)
, IS ⊥ x; u = i , i ∈ [iaI S −d , iaI S +d ];

Hza
(
i , j , k

)
, IS ⊥ y ; u = j , j ∈ [ jaI S −d , jaI S +d ].

1pt filtering, d = 1, IS = IL−1

ρ = X1 A (u)+X2 A (u +1) ; (4.56)

1pt filtering, d = 1, IS = IR

ρ = X1 A (u)+X2 A (u −1) ; (4.57)

3pt filtering, d = 2, IS = IL−1

ρ = X1ρ1 +X2ρ2, (4.58)
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where

ρ1 =
1

4
A (u −1)+ 1

2
A (u)+ 1

4
A (u +1) ,

ρ2 =
1

4
A (u)+ 1

2
A (u +1)+ 1

4
A (u +2) ;

3pt filtering, d = 2, IS = IR

ρ = X1ρ1 +X2ρ2, (4.59)

where

ρ1 =
1

4
A (u −1)+ 1

2
A (u)+ 1

4
A (u +1) ,

ρ2 =
1

4
A (u −2)+ 1

2
A (u −1)+ 1

4
A (u) .

Three-Dimensional Filtering

Prior to reading this section, it might be beneficial to review Figure 4.14, that vi-

sualises the filtering process in 3D. Filtering in three dimensions uses the points

lying in the rectangular cuboid surrounding the target point. Now the field value

extraction and filtering occurs along three dimensions using the auxiliary coordi-

nates u, v, w . Values of u0, v0, w0 specify the location of the target point in x, y, z-

axes. Target point will contain the interpolation result. Values of u0, v0, w0 lie in the

middle of the coordinate ranges specified by the cases construct below. Target point

coordinates u0, v0, w0 depend on the electric field component Exa , Ey a , Eza and the

orientation of the IS, e.g. in case of Exa and IS ⊥ y the value v0 = jaI S .

Three arrays of extracted values are used in explanation of the interpolation pro-

cess: Av (u, v, w) is a 3D array storing the values in a volume, Ap (u, v) is a 2D array

storing the values on a central plane of the volume and Al (u) is a 1D array storing

the values of the middle line of the plane. Indices v, p, l in arrays A stand for volume,

plane and line respectively. In a programming language all three arrays Av , Ap , Al

can be replaced with a single 3D array. Three arrays are used only for the clarity of

explanation.
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Electric Field Components

Av (u, v, w) =



Exa
(
i , j , k

)
, IS ⊥ y ; u = i ±d , v = jaI S ±d , w = k ±d ;

Exa
(
i , j , k

)
, IS ⊥ z; u = i ±d , v = j ±d , w = kaI S ±d ;

Ey a
(
i , j , k

)
, IS ⊥ x; u = iaI S ±d , v = j ±d , w = k ±d ;

Ey a
(
i , j , k

)
, IS ⊥ z; u = i ±d , v = j ±d , w = kaI S ±d ;

Eza
(
i , j , k

)
, IS ⊥ x; u = iaI S ±d , v = j ±d , w = k ±d ;

Eza
(
i , j , k

)
, IS ⊥ y ; u = i ±d , v = jaI S ±d , w = k ±d ;

3pt filtering, d = 1

Ap (u, v) = 1

4
Av (u, v, w0 −1)+ 1

2
Av (u, v, w0)+ 1

4
Av (u, v, w0 +1) , u, v ∈ [−1,1];

Al (u) = 1

4
Ap (u, v0 −1)+ 1

2
Ap (u, v0)+ 1

4
Ap (u, v0 +1) , u ∈ [−1,1]; (4.60)

ρ = 1

4
Al (u0 −1)+ 1

2
Al (u0)+ 1

4
Al (u0 +1) ;

5pt filtering (i), d = 2

Ap (u, v) = 1

8
(Av (u, v, w0 −2)+ Av (u, v, w0 +2))

+ 1

4
(Av (u, v, w0 −1)+ Av (u, v, w0)+ Av (u, v, w0 +1)) , u, v ∈ [−2,2];

Al (u) = 1

8

(
Ap (u, v0 −2)+ Ap (u, v0 +2)

)
+ 1

4

(
Ap (u, v0 −1)+ Ap (u, v0)+ Ap (u, v0 +1)

)
, u ∈ [−2,2]; (4.61)

ρ = 1

8
(Al (u0 −2)+ Al (u0 +2)) + 1

4
(Al (u0 −1)+ Al (u0)+ Al (u0 +1)) ;

5pt filtering (ii), d = 2

Ap (u, v) = 1

16
(Av (u, v, w0 −2)+ Av (u, v, w0 +2))+ 3

8
Av (u, v, w0)

+ 1

4
(Av (u, v, w0 −1)+ Av (u, v, w0 +1)) , u, v ∈ [−2,2];
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Al (u) = 1

16

(
Ap (u, v0 −2)+ Ap (u, v0 +2)

)+ 3

8
Ap (u, v0)

+ 1

4

(
Ap (u, v0 −1)+ Ap (u, v0 +1)

)
, u ∈ [−2,2]; (4.62)

ρ = 1

16
(Al (u0 −2)+ Al (u0 +2)) + 3

8
Al (u0) + 1

4
(Al (u0 −1)+ Al (u0 +1)) .

Magnetic Field Components

Magnetic field components are filtered in the same manner as the electric field com-

ponents. The same interpolation (4.60) to (4.62) are used. The one half spatial step

offset between the electric and magnetic fields in the HSG method is realised in the

main grid value calculation at the IS (see Figure 4.15 for details).

4.7.5 Interpolation of Main Grid Values at Inner Surface

This section describes the process of main grid value interpolation at the IS. After

each iteration of the subgrid the newly calculated values of electric or magnetic field

receive a portion of equivalent current from the main grid. But main grid values are

not available at all subgrid locations. Therefore, the missing locations of main grid

values at the IS are obtained with spatial interpolation.

Table 4.1 lists the symbols used in this section. Parameter P stands for a generic

filtering function (see Section 4.7.4 for details), field value with a tilde Ẽs denotes a

filtered value and field value with a hat Ês describes a spatially interpolated value.

Symbols L and R stand for the left and right IS coordinates where the values are

interpolated, e.g. L and R in x-axis denote iaI L and iaI R planes. Parameters X1, X2

are the spatial interpolation coefficients, values i , j , k describe the spatial location

of a field value, and indices aux and sub denote the triples of auxiliary coordinates

necessary to iterate between the main grid points.

Electric Field Components

Prior to spatial interpolation the electric field values are filtered. The filtering pro-

cedure is optional. Field value selection process is described by the cases construct
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Parameter Description

r subgridding ratio

P filtering function; 1D or 3D; 1, 3, 5 point interpolation

Ẽs
(
i , j , k

)
filtered Es

(
i , j , k

)
values, where s = x, y, z

Ês
(
i , j , k

)
spatially interpolated Es

(
i , j , k

)
values

L,R target planes for interpolation: left, right

X1, X2 interpolation coefficients

i , j , k spatial coordinates

iaux , jaux , kaux coordinates to iterate in main grid spatial steps between
main grid points at IS

isub , jsub , ksub coordinates to iterate in subgrid spatial steps between
two adjacent main grid points at IS

Table 4.1: Notation for main grid value interpolation at Inner Surface

below:

Es
(
i , j , k

)=



Exa , IS ⊥ y, i ∈ [iaI L −1, iaI R ], k ∈ [kaI L ,kaI R ], j = jaI L , jaI R ;

Exa , IS ⊥ z, i ∈ [iaI L −1, iaI R ], j ∈ [ jaI L , jaI R ], k = kaI L , kaI R ;

Ey a , IS ⊥ z, j ∈ [ jaI L −1, jaI R ], i ∈ [iaI L , iaI R ], k = kaI L , kaI R ;

Ey a , IS ⊥ x, j ∈ [ jaI L −1, jaI R ], k ∈ [kaI L ,kaI R ], i = iaI L , iaI R ,

Eza , IS ⊥ x, k ∈ [kaI L −1,kaI R ], j ∈ [ jaI L , jaI R ], i = iaI L , iaI R ,

Eza , IS ⊥ y, k ∈ [kaI L −1,kaI R ], i ∈ [iaI L , iaI R ], j = jaI L , jaI R .

Selected electric field component values are filtered with the filtering function P :

Ẽs
(
i , j , k

)= P
(
Es

(
i , j , k

))
. (4.63)

For example in case of Exa and IS ⊥ y the filtering procedure will have the form:

Ẽxa
(
i , j , k

)= P
(
Exa

(
i , j , k

))
, (4.64)

where i ∈ [iaI L − 1, iaI R ], k ∈ [kaI L ,kaI R ]. Additional spatial location iaI L − 1 in x-

axis is necessary for correct operation of the filtering function. The −1 coordinate

shift is dictated by the implementation of the filtering function in the programming

language.
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After filtering the IS values are calculated by interpolating electric field compo-

nents. The case below is shown for Exa
(
i , j ,k

)
and IS ⊥ y . Other cases are calculated

in a similar manner by a circular permutation of the i , j , k coordinates.

Equations (4.65) and (4.66) filter and interpolate component Exa along x and

z-axes. Subgrid granularity in x-axis is achieved with the subgrid iterator isub . In

z-axis the interpolation proceeds in main grid steps of kaux .

For i ∈ [iaI L , iaI R −1], j = jaI L , jaI R , k ∈ [kaI L ,kaI R ]:

Êxa
(
iaux , j , kaux

)= Ẽxa
(
i , j , k

)
, (4.65)

Êxa
(
iaux ± isub , j , kaux

)= X1 Ẽxa
(
i ±1, j , k

)+X2 Ẽxa
(
i , j , k

)
, (4.66)

where

iaux ∈
[

ibI L +
r −1

2
, ibI R , step = r

]
, kaux ∈ [

kbI L , kbI R , step = r
]

isub ∈
[

1,
r −1

2

]
, X1 =

isub

r
, X2 = 1−X1.

The “±” signs in (4.66) are responsible for the main and subgrid nodes selection

to the left and to the right of the central subgrid node (see Figure 4.15a for more

details). The “±” signs are identical on both sides of (4.66), i.e. in case the “−” sign

is selected on the left-hand side of (4.66), the “−” sign is also used on the right-hand

side of (4.66).

Iterator iaux and kaux ranges are specified with the triples of the form
[
beg i n, end , step

]
,

where beg i n and end denote the beginning and ending indices of the coordinate

range and step stands for the increment of the iterator. For example, the range

kaux ∈ [
kbI L , kbI R , step = r

]
means that kaux will begin at kbI L and end at kbI R ,

while the iteration will proceed in main grid steps of step = r .

Equation (4.67) interpolates component Exa along x and z-axes. This time the

subgrid granularity is achieved in both x and z-axes with the subgrid iterators i and

ksub . In z-axis parameter k is responsible for the iteration between the main grid

nodes and parameter ksub for the iteration between the subgrid nodes.

For i ∈ [ibI L , ibI R −1], j = jbI L , jbI R , k ∈ [kbI L + r,kbI R , step = r ]:

Êxa
(
i , j , k −ksub

)= X1 Êxa
(
i , j , k − r

)+X2 Êxa
(
i , j , k

)
, (4.67)
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where

ksub ∈ [1,r −1], X1 =
ksub

r
, X2 = 1−X1.

In summary the main grid values of Exa are spatially interpolated with (4.65)

to (4.67). At the end of the process the subgrid values of Exa will be available in the

xz-plane.

Figure 4.15 gives an example of the spatial interpolation for iaI L ∼ iaI R −1 = 3,

kaI L ∼ kaI R = 3 and r = 5. Step of iaux ,kaux is equal to the distance between two

main grid nodes and step of isub ,ksub equals to the distance between two subgrid

nodes. Large hollow circles in Figure 4.15 denote locations of the main grid nodes

and small vertical bars—of the subgrid nodes. Small filled circles show the initial

subgrid nodes where the spatial interpolation starts. Red circles denote the cur-

rent main grid nodes that participate in interpolation. Figure 4.15 illustrates the

two parts of spatial interpolation. Part 1 governed by (4.65) and (4.66) is explained

in Figure 4.15a and part 2 defined by (4.67) is depicted in Figure 4.15b.

Magnetic Field Components

Magnetic field components interpolation is identical to the electric field compo-

nents shown above. Since magnetic field components are shifted one half space

step relative to the electric field, it is important to distinguish between the left and

right Inner Surfaces:

Hs
(
i , j , k

)=



Hxa , IS ⊥ y, i ∈ [iaI L , iaI R ], k ∈ [kaI L −1,kaI R ], L = jaI L , R = jaI R ;

Hxa , IS ⊥ z, i ∈ [iaI L , iaI R ], j ∈ [ jaI L −1, jaI R ], L = kaI L , R = kaI R ;

Hy a , IS ⊥ z, j ∈ [ jaI L , jaI R ], i ∈ [iaI L −1, iaI R ], L = kaI L , R = kaI R ;

Hy a , IS ⊥ x, j ∈ [ jaI L , jaI R ], k ∈ [kaI L −1,kaI R ], L = iaI L , R = iaI R ;

Hza , IS ⊥ x, k ∈ [kaI L ,kaI R ], j ∈ [ jaI L −1, jaI R ], L = iaI L , R = iaI R ;

Hza , IS ⊥ y, k ∈ [kaI L ,kaI R ], i ∈ [iaI L −1, iaI R ], L = jaI L , R = jaI R .

Optionally magnetic field values are filtered first. Filtering in 1D is defined by the

relations below:5

H̃s (i , L, k) = P (Hs (i , L−1, k)) , (4.68)

H̃s (i , R, k) = P (Hs (i , R, k)) . (4.69)

5Spatial interpolation is implemented inside the 1D filtering function.
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0

z

x

i      −1aIR

i aIL

kaIR

kaIL

1

2

3

(a) Part 1. Encircled numbers show the main steps of interpolation: 1—a central subgrid node in
between two main grid nodes (shown in red) is selected. Interpolation proceeds in subgrid steps
governed by ±isub coordinate, 2—once all the subgrid values in between two main grid nodes are
obtained a new central subgrid node is chosen in the middle of the next pair of main grid nodes, 3—
once all subgrid nodes at a single line kaux are calculated the new line is selected by incrementing
kaux .

0

z

x

i      −1bIR

i bIL

kbIL

kbIR

1

3

2

(b) Part 2. Encircled numbers show the main steps of interpolation: 1—interpolation in between
two main grid nodes proceeds in small steps governed by ksub coordinate, 2—once all the subgrid
values in between two main grid nodes are obtained a new pair of main grid nodes is chosen by
incrementing kbI L by r , 3—once all subgrid nodes at a single line i are calculated the new line is
selected by incrementing i .

Figure 4.15: Spatial interpolation of electric field component Exa at IS ⊥ y
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For example in case of Hxa and IS ⊥ y the filtering function will have the form:

H̃xa
(
i , jaI L , k

)= P
(
Hxa

(
i , jaI L −1, k

))
, (4.70)

where i ∈ [iaI L , iaI R ], k ∈ [kaI L −1,kaI R ]. Coordinate shift kaI L −1 in z-axis is neces-

sary for correct operation of the filtering function. This shift depends on the imple-

mentation of the filter in a programming language.

Alternatively the magnetic field components can also be filtered in (3D):

H̃s (i , L, k) = X1 ·P (Hs (i , L−1, k))+X2 ·P (Hs (i , L, k)), (4.71)

H̃s (i , R, k) = X1 ·P (Hs (i , R, k))+X2 ·P (Hs (i , R −1, k)), (4.72)

where

X1 =
r +1

2r
, X2 = 1−X1.

The importance of clear distinction between IL and IR can be vividly seen in (4.71)

and (4.72). Filtering at IS occurs between the IS node and the adjacent node outside

of the IS. Coordinates L and R ensure that the adjacent node outside of IS is selected

for the interpolation. Spatial interpolation coefficients X1, X2 control the amount

that each main grid node contributes to the resulting value.

After filtering the IS values are calculated by interpolating magnetic field compo-

nents. The case below is shown for Hxa
(
i , j ,k

)
and IS⊥ y . Other cases are calculated

in a similar manner by a circular permutation of the i , j , k coordinates.

Equations (4.73) and (4.74) filter and interpolate component Hxa along x and

z-axes. In x-axis the interpolation proceeds in main grid steps of iaux . Subgrid gran-

ularity in z-axis is achieved with the subgrid iterator ksub . See commentary to (4.66)

on the explanation of the “±” signs and the iterator ranges used in (4.74).

For i ∈ [iaI L , iaI R ], j = jaI L , jaI R , k ∈ [kaI L ,kaI R −1]:

Ĥxa
(
iaux , j , kaux

)= H̃xa
(
i , j , k

)
, (4.73)

Ĥxa
(
iaux , j , kaux ±ksub

)= X1 H̃xa
(
i , j , k ±1

)+X2 H̃xa
(
i , j , k

)
, (4.74)

where

iaux ∈ [
ibI L , ibI R , step = r

]
, kaux ∈

[
kbI L +

r −1

2
, kbI R , step = r

]
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ksub ∈
[

1,
r −1

2

]
, X1 =

ksub

r
, X2 = 1−X1.

Equation (4.75) interpolates component Hxa along x and z-axes. This time the

subgrid granularity is achieved in both x and z-axes with the subgrid iterators isub

and k. In x-axis parameter i is responsible for the iteration between the main grid

nodes and parameter isub for the iteration between the subgrid nodes.

For i ∈ [ibI L + r, ibI R , step = r ], j = jbI L , jbI R , k ∈ [kbI L ,kbI R −1]:

Ĥxa
(
i − isub , j , k

)= X1 Ĥxa
(
i − r, j , k

)+X2 Ĥxa
(
i , j , k

)
, (4.75)

where

isub ∈ [1,r −1], X1 =
isub

r
, X2 = 1−X1.

Spatial interpolation of Hxa values with (4.71) to (4.75) will result in the subgrid

values of Ĥxa in the xz-plane.

4.7.6 Equivalent Currents Calculation at Huygens Surfaces

This section presents the equations for the equivalent current calculation at the In-

ner and Outer Huygens Surfaces. Symbols Ë and Ḧ in Section 4.7.6 denote the elec-

tric and magnetic field components obtained with the normal FDTD updates.

Electric Field Components

Inner Surface

The Inner Surface value calculation consists in correcting previously calculated sub-

grid values by injecting the IS equivalent current from the main grid. Spatially and

temporally interpolated main grid value is either added to or subtracted from a sub-

grid value. This subgrid value is calculated with a normal FDTD update. The plus

or minus sign preceding the temporally interpolated main grid value depends on

the component location in the SF or TF region. Since the spatial interpolation of

the main grid values is accomplished by equations listed in Section 4.7.5, it is only

the temporal interpolation that remains to be done at the IS. The values of tempo-

ral interpolation coefficients Υ1,Υ2 are defined by (4.24) and (4.25), and change

depending on the time-step value of the subgrid (see Section 4.7.7 for details).
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Correct Exb :

E n
xb

(
i , jbI L , k

)= Ë n
xb

(
i , jbI L , k

)
− Γ2b

(
i , jbI L , k

)
∆yb

(
Υ1 Ĥ n−1

za

(
i , jbI L , k

)+Υ2 Ĥ n
za

(
i , jbI L , k

))
, (4.76)

E n
xb

(
i , jbI R , k

)= Ë n
xb

(
i , jbI R , k

)
+ Γ2b

(
i , jbI R , k

)
∆yb

(
Υ1 Ĥ n−1

za

(
i , jbI R , k

)+Υ2 Ĥ n
za

(
i , jbI R , k

))
, (4.77)

where i ∈ [ibI L , ibI R −1]; k ∈ [kbI L ,kbI R ].

Consider equations (4.76) and (4.77) governing magnetic field equivalent cur-

rent at the IS flowing from the main to the subgrid. Main grid component Ĥza in-

fluences the subgrid component Exb . Normal FDTD update for the electric field

component E n
xb

(
i , jbI L ,k

)
in the subgrid is:

E n
xb

(
i , jbI L ,k

)= Γ1b
(
i , jbI L ,k

)
E n−1

xb

(
i , jbI L ,k

)

+Γ2b
(
i , jbI L ,k

)



H n
zb

(
i , jbI L ,k

)−H n
zb

(
i , jbI L −1,k

)
∆yb

−
H n

yb

(
i , jbI L ,k

)−H n
yb

(
i , jbI L ,k −1

)
∆zb

−J n
sr c, xb

(
i , jbI L ,k

)


. (4.78)

Figure 4.16 shows the subgrid nodes Hzb at IL and IR when IS ⊥ y . At IL the node

Hzb
(
i , jbI L ,k

)
is located in the total field region and the node Hzb

(
i , jbI L −1,k

)
is

positioned in the scattered field region. Magnetic field nodes crossing the IL ⊥ y are

outlined in (4.78), where

H n
zb, tot

(
i , jbI L ,k

)−H n
zb, sct

(
i , jbI L −1,k

)
. (4.79)
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Incident wave

Total fieldScattered field

Hzb(i , jbI L −1,k) Hzb(i , jbI L ,k)

jbI L
x

y

z

(a) Inner Left (IL)

Scattered field

Incident wave

Total field

Hzb(i , jbI R −1,k) Hzb(i , jbI R ,k)

jbI R
x

y

z

(b) Inner Right (IR)

Figure 4.16: Magnetic field components Hzb at IS

To balance the TF/SF relation the incident field has to be subtracted from (4.79):

H n
zb, tot

(
i , jbI L ,k

)−H n
zb, sct

(
i , jbI L −1,k

)− Ĥ∗
za, i nc

(
i , jbI L ,k

)
, (4.80)

where Ĥ∗
za, i nc

(
i , jbI L ,k

)
denotes the temporally interpolated Ĥza

(
i , jbI L ,k

)
value:

Ĥ∗
za, i nc

(
i , jbI L ,k

)=Υ1 Ĥ n−1
za

(
k, i , jbI R

)+Υ2 Ĥ n
za

(
k, i , jbI R

)
. (4.81)

Denoting normal FDTD update of E n
xb

(
i , jbI L ,k

)
(4.78) as Ë n

xb

(
i , jbI L ,k

)
and in-

cluding the incident field value of Ĥ∗
za, i nc

(
i , jbI L ,k

)
leads to the correction equation

for E n
xb

(
i , jbI L ,k

)
at IL (4.76).

Figure 4.16b shows the IR when IS ⊥ y . In this case component Hzb
(
i , jbI R ,k

)
is located in the scattered field region and component Hzb

(
i , jbI R −1,k

)
is posi-

tioned in the total field region. To balance the TF/SF relation the incident field value

Ĥ∗
za, i nc

(
i , jbI R ,k

)
is added to the difference H n

zb, sct

(
i , jbI R ,k

)−H n
zb, tot

(
i , jbI R −1,k

)
in (4.77).

All other correction equations for components Exb , Eyb , Ezb are derived simi-

larly:

E n
xb

(
i , j , kbI L

)= Ë n
xb

(
i , j , kbI L

)
+ Γ2b

(
i , j , kbI L

)
∆zb

(
Υ1 Ĥ n−1

y a

(
i , j , kbI L

)+Υ2 Ĥ n
y a

(
i , j , kbI L

))
, (4.82)
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E n
xb

(
i , j , kbI R

)= Ë n
xb

(
i , j , kbI R

)
− Γ2b

(
i , j , kbI R

)
∆zb

(
Υ1 Ĥ n−1

y a

(
i , j , kbI R

)+Υ2 Ĥ n
y a

(
i , j , kbI R

))
, (4.83)

where i ∈ [ibI L , ibI R −1]; j ∈ [ jbI L , jbI R ].

Correct Eyb :

E n
yb

(
i , j , kbI L

)= Ë n
yb

(
i , j , kbI L

)
− Γ2b

(
i , j , kbI L

)
∆zb

(
Υ1 Ĥ n−1

xa

(
i , j , kbI L

)+Υ2 Ĥ n
xa

(
i , j , kbI L

))
, (4.84)

E n
yb

(
i , j , kbI R

)= Ë n
yb

(
i , j , kbI R

)
+ Γ2b

(
i , j , kbI R

)
∆zb

(
Υ1 Ĥ n−1

xa

(
i , j , kbI R

)+Υ2 Ĥ n
xa

(
i , j , kbI R

))
, (4.85)

where j ∈ [ jbI L , jbI R −1]; i ∈ [ibI L , ibI R ].

E n
yb

(
ibI L , j , k

)= Ë n
yb

(
ibI L , j , k

)
+ Γ2b

(
ibI L , j , k

)
∆xb

(
Υ1 Ĥ n−1

za

(
ibI L , j , k

)+Υ2 Ĥ n
za

(
ibI L , j , k

)
,
)

, (4.86)

E n
yb

(
ibI R , j , k

)= Ë n
yb

(
ibI R , j , k

)
− Γ2b

(
ibI R , j , k

)
∆xb

(
Υ1 Ĥ n−1

za

(
ibI R , j , k

)+Υ2 Ĥ n
za

(
ibI R , j , k

))
, (4.87)

where j ∈ [ jbI L , jbI R −1]; k ∈ [kbI L ,kbI R ].

Correct Ezb :

E n
zb

(
ibI L , j , k

)= Ë n
zb

(
ibI L , j , k

)
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− Γ2b
(
ibI L , j , k

)
∆xb

(
Υ1 Ĥ n−1

y a

(
ibI L , j , k

)+Υ2 Ĥ n
y a

(
ibI L , j , k

))
, (4.88)

E n
zb

(
ibI R , j , k

)= Ë n
zb

(
ibI R , j , k

)
i

+ Γ2b
(
ibI R , j , k

)
∆xb

(
Υ1 Ĥ n−1

y a

(
ibI R , j , k

)+Υ2 Ĥ n
y a

(
ibI R , j , k

))
, (4.89)

where k ∈ [kbI L ,kbI R −1]; j ∈ [ jbI L , jbI R ].

E n
zb

(
i , jbI L , k

)= Ë n
zb

(
i , jbI L , k

)
+ Γ2b

(
i , jbI L , k

)
∆yb

(
Υ1 Ĥ n−1

xa

(
i , jbI L , k

)+Υ2 Ĥ n
xa

(
i , jbI L , k

))
, (4.90)

E n
zb

(
i , jbI R , k

)= Ë n
zb

(
i , jbI R , k

)
− Γ2b

(
i , jbI R , k

)
∆yb

(
Υ1 Ĥ n−1

xa

(
i , jbI R , k

)+Υ2 Ĥ n
xa

(
i , jbI R , k

))
, (4.91)

where k ∈ [kbI L ,kbI R −1]; i ∈ [ibI L , ibI R ].

Outer Surface

Since all subgrid values are available at the main grid locations at the OS no spatial

and temporal interpolations are necessary. Similar to the IS the main grid values

calculated normally are corrected with the equivalent current from the subgrid.

Correct Exa :

E n
xa

(
i , j , kaOL

)= Ë n
xa

(
i , j , kaOL

)− Γ2a
(
i , j , kaOL

)
∆za

H n
yb

(
ib , jb , kbOL − r+1

2

)
,

E n
xa

(
i , j , kaOR

)= Ë n
xa

(
i , j , kaOR

)+ Γ2a
(
i , j , kaOR

)
∆za

H n
yb

(
ib , jb , kbOR + r−1

2

)
,

(4.92)

where

i ∈ [iaOL , iaOR −1], j ∈ [ jaOL , jaOR ],
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ib = ibOL + r (i − iaOL)+ r−1
2 , jb = jbOL + r ( j − jaOL).

E n
xa

(
i , jaOL , k

)= Ë n
xa

(
i , jaOL , k

)+ Γ2a
(
i , jaOL , k

)
∆ya

H n
zb

(
ib , jbOL − r+1

2 , kb
)

,

E n
xa

(
i , jaOR , k

)= Ë n
xa

(
i , jaOR , k

)− Γ2a
(
i , jaOR , k

)
∆ya

H n
zb

(
ib , jbOR + r−1

2 , kb
)

,

(4.93)

where

i ∈ [iaOL , iaOR −1], k ∈ [kaOL ,kaOR ],

ib = ibOL + r (i − iaOL)+ r−1
2 , kb = kbOL + r (k −kaOL).

Correct Ey a :

E n
y a

(
iaOL , j , k

)= Ë n
y a

(
iaOL , j , k

)− Γ2a
(
iaOL , j , k

)
∆xa

H n
zb

(
ibOL − r+1

2 , jb , kb
)

,

E n
y a

(
iaOR , j , k

)= Ë n
y a

(
iaOR , j , k

)+ Γ2a
(
iaOR , j , k

)
∆xa

H n
zb

(
ibOR + r−1

2 , jb , kb
)

,

(4.94)

where

j ∈ [ jaOL , jaOR −1], k ∈ [kaOL ,kaOR ],

jb = jbOL + r ( j − jaOL)+ r−1
2 , kb = kbOL + r (k −kaOL).

E n
y a

(
i , j , kaOL

)= Ë n
y a

(
i , j , kaOL

)+ Γ2a
(
i , j , kaOL

)
∆za

H n
xb

(
ib , jb , kbOL − r+1

2

)
,

E n
y a

(
i , j , kaOR

)= Ë n
y a

(
i , j , kaOR

)− Γ2a
(
i , j , kaOR

)
∆za

H n
xb

(
ib , jb , kbOR + r−1

2

)
,

(4.95)

where

j ∈ [ jaOL , jaOR −1], i ∈ [iaOL , iaOR ],

jb = jbOL + r ( j − jaOL)+ r−1
2 , ib = ibOL + r (i − iaOL).
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Correct Eza :

E n
za

(
i , jaOL , k

)= Ë n
za

(
i , jaOL , k

)− Γ2a
(
i , jaOL , k

)
∆ya

H n
xb

(
ib , jbOL − r+1

2 , kb
)

,

E n
za

(
i , jaOR , k

)= Ë n
za

(
i , jaOR , k

)+ Γ2a
(
i , jaOR , k

)
∆ya

H n
xb

(
ib , jbOR + r−1

2 , kb
)

,

(4.96)

where

i ∈ [iaOL , iaOR ], k ∈ [kaOL ,kaOR −1],

ib = ibOL + r (i − iaOL), kb = kbOL + r (k −kaOL)+ r−1
2 .

E n
za

(
iaOL , j , k

)= Ë n
za

(
iaOL , j , k

)+ Γ2a
(
iaOL , j , k

)
∆xa

H n
yb

(
ibOL − r+1

2 , jb , kb
)

,

E n
za

(
iaOR , j , k

)= Ë n
za

(
iaOR , j , k

)− Γ2a
(
iaOR , j , k

)
∆xa

H n
yb

(
ibOR + r−1

2 , jb , kb
)

,

(4.97)

where

j ∈ [ jaOL , jaOR ], k ∈ [kaOL ,kaOR −1],

jb = jbOL + r ( j − jaOL), kb = kbOL + r (k −kaOL)+ r−1
2 .

Magnetic Field Components

Magnetic field components at the Inner and Outer Huygens Surfaces are calculated

similarly to the electric field components. All comments in Section 4.7.6 are valid

for the magnetic field calculation shown below.

Inner Surface

Correct Hxb :

H n
xb

(
i , jbI L −1, k

)= Ḧ n
xb

(
i , jbI L −1, k

)
+ Z2b

(
i , jbI L −1, k

)
∆yb

(
Υ1 Ê n−1

za

(
i , jbI L −1, k

)+Υ2 Ê n
za

(
i , jbI L −1, k

))
, (4.98)
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H n
xb

(
i , jbI R , k

)= Ḧ n
xb

(
i , jbI R , k

)
− Z2b

(
i , jbI R , k

)
∆yb

(
Υ1 Ê n−1

za

(
i , jbI R , k

)+Υ2 Ê n
za

(
i , jbI R , k

))
, (4.99)

where i ∈ [ibI L , ibI R ]; k ∈ [kbI L ,kbI R −1].

H n
xb

(
i , j , kbI L −1

)= Ḧ n
xb

(
i , j , kbI L −1

)
− Z2b

(
i , j , kbI L −1

)
∆zb

(
Υ1 Ê n−1

y a

(
i , j , kbI L −1

)
∆zb +Υ2 Ê n

y a

(
i , j , kbI L −1

))
, (4.100)

H n
xb

(
i , j , kbI R

)= Ḧ n
xb

(
i , j , kbI R

)
+ Z2b

(
i , j , kbI R

)
∆zb

(
Υ1 Ê n−1

y a

(
i , j , kbI R

)+Υ2 Ê n
y a

(
i , j , kbI R

))
, (4.101)

where i ∈ [ibI L , ibI R ]; j ∈ [ jbI L , jbI R −1].

Correct Hyb :

H n
yb

(
i , j , kbI L −1

)= Ḧ n
yb

(
i , j , kbI L −1

)
+ Z2b

(
i , j , kbI L −1

)
∆zb

(
Υ1 Ê n−1

xa

(
i , j , kbI L −1

)+Υ2 Ê n
xa

(
i , j , kbI L −1

))
, (4.102)

H n
yb

(
i , j , kbI R

)= Ḧ n
yb

(
i , j , kbI R

)
− Z2b

(
i , j , kbI R

)
∆zb

(
Υ1 Ê n−1

xa

(
i , j , kbI R

)+Υ2 Ê n
xa

(
i , j , kbI R

))
, (4.103)

where j ∈ [ jbI L , jbI R ]; i ∈ [ibI L , ibI R −1].

H n
yb

(
ibI L −1, j , k

)= Ḧ n
yb

(
ibI L −1, j , k

)
− Z2b

(
ibI L −1, j , k

)
∆xb

(
Υ1 Ê n−1

za

(
ibI L −1, j , k

)+Υ2 Ê n
za

(
ibI L −1, j , k

))
, (4.104)
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H n
yb

(
ibI R , j , k

)= Ḧ n
yb

(
ibI R , j , k

)
+ Z2b

(
ibI R , j , k

)
∆xb

(
Υ1 Ê n−1

za

(
ibI R , j , k

)+Υ2 Ê n
za

(
ibI R , j , k

))
, (4.105)

where j ∈ [ jbI L , jbI R ]; k ∈ [kbI L ,kbI R −1].

Correct Hzb :

H n
zb

(
ibI L −1, j , k

)= Ḧ n
zb

(
ibI L −1, j , k

)
+ Z2b

(
ibI L −1, j , k

)
∆xb

(
Υ1 Ê n−1

y a

(
ibI L −1, j , k

)+Υ2 Ê n
y a

(
ibI L −1, j , k

))
, (4.106)

H n
zb

(
ibI R , j , k

)= Ḧ n
zb

(
ibI R , j , k

)
− Z2b

(
ibI R , j , k

)
∆xb

(
Υ1 Ê n−1

y a

(
ibI R , j , k

)+Υ2 Ê n
y a

(
ibI R , j , k

))
, (4.107)

where k ∈ [kbI L ,kbI R ]; j ∈ [ jbI L , jbI R −1].

H n
zb

(
i , jbI L −1, k

)= Ḧ n
zb

(
i , jbI L −1, k

)
− Z2b

(
i , jbI L −1, k

)
∆yb

(
Υ1 Ê n−1

xa

(
i , jbI L −1, k

)+Υ2 Ê n
xa

(
i , jbI L −1, k

))
, (4.108)

H n
zb

(
i , jbI R , k

)= Ḧ n
zb

(
i , jbI R , k

)
+ Z2b

(
i , jbI R , k

)
∆yb

(
Υ1 Ê n−1

xa

(
i , jbI R , k

)+Υ2 Ê n
xa

(
i , jbI R , k

))
, (4.109)

where k ∈ [kbI L ,kbI R ]; i ∈ [ibI L , ibI R −1].
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Outer Surface

Correct Hxa :

H n
xa

(
i , jaOL −1, k

)= Ḧ n
xa

(
i , jaOL −1,k

)− Z2a
(
i , jaOL −1, k

)
∆ya

E n
zb

(
ib , jbOL , kb

)
,

H n
xa

(
i , jaOR , k

)= Ḧ n
xa

(
i , jaOR , k

)+ Z2a
(
i , jaOR , k

)
∆ya

E n
zb

(
ib , jbOR , kb

)
,

(4.110)

where

i ∈ [iaOL , iaOR ], k ∈ [kaOL ,kaOR −1],

ib = ibOL + r (i − iaOL), kb = kbOL + r (k −kaOL)+ r−1
2 .

H n
xa

(
i , j , kaOL −1

)= Ḧ n
xa

(
i , j , kaOL −1

)+ Z2a
(
i , j , kaOL −1

)
∆za

E n
yb

(
ib , jb , kbOL

)
,

H n
xa

(
i , j , kaOR

)= Ḧ n
xa

(
i , j , kaOR

)− Z2a
(
i , j , kaOR

)
∆za

E n
yb

(
ib , jb , kbOR

)
,

(4.111)

where

i ∈ [iaOL , iaOR ], j ∈ [ jaOL , jaOR −1],

ib = ibOL + r (i − iaOL), jb = jbOL + r ( j − jaOL)+ r−1
2 .

Correct Hy a :

H n
y a

(
i , j , kaOL −1

)= Ḧ n
y a

(
i , j , kaOL −1

)− Z2a
(
i , j , kaOL −1

)
∆za

E n
xb

(
ib , jb , kbOL

)
,

H n
y a

(
i , j , kaOR

)= Ḧ n
y a

(
i , j , kaOR

)+ Z2a
(
i , j , kaOR

)
∆za

E n
xb

(
ib , jb , kbOR

)
,

(4.112)

where

i ∈ [iaOL , iaOR −1], j ∈ [ jaOL , jaOR ],
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ib = ibOL + r (i − iaOL)+ r−1
2 , jb = jbOL + r ( j − jaOL).

H n
y a

(
iaOL −1, j , k

)= Ḧ n
y a

(
iaOL −1, j , k

)+ Z2a
(
iaOL −1, j , k

)
∆xa

E n
zb

(
ibOL , jb , kb

)
,

H n
y a

(
iaOR , j , k

)= Ḧ n
y a

(
iaOR , j , k

)− Z2a
(
iaOR , j , k

)
∆xa

E n
zb

(
ibOR , jb , kb

)
,

(4.113)

where

j ∈ [ jaOL , jaOR ], k ∈ [kaOL ,kaOR −1],

jb = jbOL + r ( j − jaOL), kb = kbOL + r (k −kaOL)+ r−1
2 .

Correct Hza :

H n
za

(
iaOL −1, j , k

)= Ḧ n
za

(
iaOL −1, j , k

)− Z2a
(
iaOL −1, j , k

)
∆xa

E n
yb

(
ibOL , jb , kb

)
,

H n
za

(
iaOR , j , k

)= Ḧ n
za

(
iaOR , j , k

)+ Z2a
(
iaOR , j , k

)
∆xa

E n
yb

(
ibOR , jb , kb

)
,

(4.114)

where

j ∈ [ jaOL , jaOR −1], k ∈ [kaOL ,kaOR ],

jb = jbOL + r ( j − jaOL)+ r−1
2 , kb = kbOL + r (k −kaOL).

H n
za

(
i , jaOL −1, k

)= Ḧ n
za

(
i , jaOL −1, k

)+ Z2a
(
i , jaOL −1, k

)
∆ya

E n
xb

(
ib , jbOL , kb

)
,

H n
za

(
i , jaOR , k

)= Ḧ n
za

(
i , jaOR , k

)− Z2a
(
i , jaOR , k

)
∆ya

E n
xb

(
ib , jbOR , kb

)
,

(4.115)



4.7. MATHEMATICAL FORMULATION 129

where

i ∈ [iaOL , iaOR −1], k ∈ [kaOL ,kaOR ],

ib = ibOL + r (i − iaOL)+ r−1
2 , kb = kbOL + r (k −kaOL).

4.7.7 Calculation Order

The HSG method’s calculation order is listed below. Symbol “*” denotes the entire

spatial domain. Right-directed horizontal arrow “−→” signifies the equivalent cur-

rent injection at the IS or OS. A reference to a section containing relevant equations

is given on each line. Thick horizontal line separates the two symmetric parts of the

HSG method.

Temporal interpolation coefficients Υ1,Υ2 are used in the subgrid time loops in

both symmetric parts of the HSG algorithm. Prior to subgrid time loops the tem-

poral interpolation coefficients are Υ1 = 1,Υ2 = 0. In this case the subgrid node

coincides with the main grid node and only one component’s value will be selected,

since the other will be multiplied by 0. Inside of the subgrid time loops the interpo-

lation coefficients change their values depending on the loop iterator m. The closer

in time the subgrid node is to the most recent main grid node, the higher is this

main grid node’s influence on the interpolated subgrid value. Additional parame-

ters m1,m2 are necessary to obtain a one half time-step shift between the electric

and magnetic field values in the subgrid.

1. Calculate coefficients Γ1g (∗) , Γ2g (∗) , Z1g (∗) , Z2g (∗), where g ∈ [a, b] (Sec-

tions 4.7.1 and 4.7.2)

2. Generate excitation source signal

3. Enter main grid time loop n ∈ [1,nmax] :

(a) Re-arrange Ha (∗) (Section 4.7.3)

(b) Calculate Ha (∗) (Section 4.7.1)

(c) Calculate Ha (ABC )

(d) Re-arrange Ĥa (I S) (Section 4.7.3)

(e) Calculate Ĥa (I S) (Figure 4.15)

(f) Re-arrange Eb (∗) ( (4.50))
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(g) Calculate Eb (∗) (Section 4.7.2)

(h) Calculate Eb (ABC )

(i) Calculate Ĥa (I S) −→ Eb (I S) , Υ1 = 1, Υ2 = 0 (Section 4.7.6)

(j) Enter subgrid time loop 1: m ∈ [
1, r−1

2

]
and m1 = m + r−1

2

i. Calculate Hb (∗) (Section 4.7.1)

ii. Calculate Hb (ABC )

iii. Calculate Êa (I S) −→ Hb (I S) , Υ1 = r−m
r , Υ2 = m

r ( (4.97))

iv. Re-arrange Eb (∗) ( (4.50))

v. Calculate Eb (∗) (Section 4.7.2)

vi. Calculate Eb (ABC )

vii. Calculate Ĥa (I S) −→ Eb (I S) , Υ1 = r−m1
r , Υ2 = m1

r (Section 4.7.6)

(k) Calculate Eb (OS) −→ Ha (OS) ( (4.109))

(l) Re-arrange Ea (∗) ( (4.48))

(m) Calculate Ea (∗) (Section 4.7.2)

(n) Calculate Ea (ABC )

(o) Calculate Ea (sr c) ( (4.44))

(p) Re-arrange Êa (I S) ( (4.48))

(q) Calculate Êa (I S) (Table 4.1)

(r) Calculate Hb (∗) (Section 4.7.1)

(s) Calculate Hb (ABC )

(t) Calculate Êa (I S) −→ Hb (I S) , Υ1 = 1, Υ2 = 0 ( (4.97))

(u) Enter fine grid time loop 2: m ∈ [ r+1
2 , r

]
and m2 = m − r−1

2

i. Re-arrange Eb (∗) ( (4.50))

ii. Calculate Eb (∗) (Section 4.7.2)

iii. Calculate Eb (ABC )

iv. Calculate Ĥa (I S) −→ Eb (I S) , Υ1 = r−m2
r , Υ2 = m2

r (Section 4.7.6)

v. Calculate Hb (∗) (Section 4.7.1)

vi. Calculate Hb (ABC )



4.7. MATHEMATICAL FORMULATION 131

vii. Calculate Êa (I S) −→ Hb (I S) , Υ1 = r−m
r , Υ2 = m

r ( (4.97))

(v) Calculate Hb (OS) −→ Ea (OS) ( (4.91))

(w) Output Ea (∗) , Ha (∗)

(x) Output Eb (∗) , Hb (∗)

4. Finalise simulation

In the HSG method implementation it is possible to use only one subgrid iterator

m instead of three m, m1, m2. This is achieved by enforcing m ∈ [
1, r−1

2

]
at both

steps (j) and (u). Then the temporal interpolation coefficients at substeps (j).iii and

(u).iv are calculated as:

Υ1 =
r +1−2m

2r
, Υ2 = 1−Υ1. (4.116)

At substeps (j).vii and (u).vii the temporal interpolation coefficients are equal to:

Υ1 = 1− m

r
, Υ2 = 1−Υ1. (4.117)



Chapter 5

Frequency Dispersive

Huygens Subgridding

This chapter explains the frequency dispersive HSG method. Section 5.1 gives the

motivation for the frequency dispersive HSG approach. The main principles and the

pseudocode of the dispersive HSG method are presented in Sections 5.2 and 5.3.

The mathematical formulation (Section 5.4) highlights the new equations intro-

duced in the dispersive HSG relative to the classic HSG scheme.

5.1 Introduction

With a ubiquitous use of the miniaturised computer devices it becomes extremely

important to track any health effects caused by the constant presence of personal

electronic devices. Practical experiments exposing the volunteers to high power el-

ectromagnetic radiation are considered unethical and can be potentially harmful.

An alternative solution is offered by numerical simulation methods, that can predict

the electromagnetic radiation patterns. When tracking the wave propagation inside

and around the human body, it is especially important to consider the frequency

dispersion of the biological tissues. The Frequency Dependent–Finite-Difference

Time-Domain (FD–FDTD) method presents a numerical algorithm very well suited

to the simulation of electromagnetic waves inside the human body. However, the

geometric complexity of the human organs and high relative permittivities of hu-

man body tissues require a simulation grid with 10 to 15 times higher resolution

than a grid to sample wave propagation in free-space [109]. Solution of Maxwell’s

132
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equations on such a finely resolved model will place a heavy burden on computa-

tional resources: CPU time and memory.

Subgridding techniques were proposed in order to reduce the computational

burden. Application of a subgridding approach allows to save the resource usage

by placing the finely discretised mesh in a volume of interest and discretise the

rest of the space with a normal spatio-temporal resolution. This work focuses on

a particular subgridding technique called the Huygens Subgridding. Costen and

Bérenger [109] have already reported the HSG method’s extension to the frequency

dispersive media in 1D. Their work tested the dispersive HSG method applied to a

human body model. One-pole Debye relaxation model was used to accommodate

the frequency-dependent media. Three separate subgrids, each with a ratio of 15,

were used to successfully simulate the electromagnetic wave propagation.

This chapter describes the extension of the dispersive HSG method to 3D. The

research conducted within the current project is a continuation of Costen’s and

Bérenger’s work [109]. Three-dimensional frequency dispersive HSG method is also

the major contribution of the current PhD work and the major focus of the current

dissertation.

5.2 Basics of Dispersive Huygens Subgridding

The main quantities operated upon in the dispersive HSG approach are electric flux

densityD and magnetic fieldH , in contrast to electric and magnetic fieldsE and

H in the normal HSG method. An Auxiliary Differential Equation (ADE) method is

used at every D node to calculate the electric field value E . In this project the clas-

sical FDTD method is extended to FD–FDTD algorithm using the one-pole Debye

relaxation model. Hence, the dispersive HSG method is a combination of classical

HSG and the FD–FDTD schemes.

In 1D the energy source free Maxwell’s curl equations reduce to:

Faraday’s law:
∂Hz

∂t
=− 1

µ
·
∂Ey

∂x
. (5.1)

Ampère’s law:
∂D y

∂t
= ∂Hz

∂x
. (5.2)
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ax

Dy(0)Dy(−1)

Hz(−1/2) Hz(1/2)

Incident wave Huygens surface

Scattered field Total field

Figure 5.1: Huygens surface with electric flux density and magnetic field, 1D

Figure 5.1 depicts a hypothetical Huygens surface in 1D. The main quantities of

operation are D y and Hz . Discretising (5.2) with finite-differences and expressing

the node D y (0) yields:

Dn+1
y (0) = Dn

y (0)− ∆t

∆x

(
H

n+ 1
2

z
(1

2

)−H
n+ 1

2
z

(−1
2

))
. (5.3)

The node D y (0) lies in the total field region and the Hz nodes used in the finite-

difference expression are H
n+ 1

2
z

(1
2

)
, situated in the total field region, and H

n+ 1
2

z
(−1

2

)
,

positioned in the scattered field region. According to the TF/SF theory the total field

value can be represented as a sum of scattered and incident field values. Hence the

magnetic field value on the left-hand side from the HS in Figure 5.1 can be viewed

as:

H
n+ 1

2
z, tot

(−1
2

)= H
n+ 1

2
z, sct

(−1
2

)+H
n+ 1

2
z, i nc

(−1
2

)
. (5.4)

Applying the TF/SF regions as shown in Figure 5.1 onto (5.3) leads to the follow-

ing expression:

Dn+1
y (0) = Dn

y (0)− ∆t

∆x

(
H

n+ 1
2

z, tot

(1
2

)−H
n+ 1

2
z, sct

(−1
2

))
. (5.5)

To balance the magnetic field in the total field region H
n+ 1

2
z, tot

(1
2

)
, the node in the

scattered field region, left from the Huygens surface, H
n+ 1

2
z, sct

(−1
2

)
lacks the incident

magnetic field H
n+ 1

2
z, i nc

(−1
2

)
. This process can also be seen as a substitution of (5.4)

into (5.3). Therefore, the discretised (5.3) at Huygens surface becomes:

Dn+1
y (0) = Dn

y (0)− ∆t

∆x

(
H

n+ 1
2

z, tot

(1
2

)−H
n+ 1

2
z, sct

(−1
2

)−H
n+ 1

2
z, i nc

(−1
2

))
. (5.6)
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The discretised magnetic field expression remains unchanged relative to the clas-

sical HSG method:

H
n+ 3

2
z

(−1
2

)= H
n+ 1

2
z

(−1
2

)− ∆t

µ0∆x

(
E n+1

y (0)−E n+1
y (−1)

)
, (5.7)

where µ = µrµ0 and µr = 1. In this case the finite-difference expression has to be

evaluated between two SF values E n+1
y (0) and E n+1

y (−1). The SF value of E n+1
y, sct (0) is

obtained from the TF/SF balancing equation:

E n+1
y, sct (0) = E n+1

y, tot (0)−E n+1
y, i nc (0) . (5.8)

Substituting (5.8) into (5.7) leads to a discretised magnetic field equation at Huy-

gens surface:

H
n+ 3

2
z

(−1
2

)= H
n+ 1

2
z

(−1
2

)− ∆t

µ0∆x

(
E n+1

y, tot (0)−E n+1
y, i nc (0)−E n+1

y, sct (−1)
)

. (5.9)

5.3 Dispersive Huygens Subgridding Algorithm

Algorithm 4 shows the pseudocode of the dispersive HSG method. One iteration of

the main grid time loop is illustrated by Algorithm 4. Symbol “*” denotes all spa-

tial locations in the simulation domain. Indices a and b signify the main and the

subgrid respectively. Parameter m stands for the subgrid time loops iterator. Sub-

gridding ratio is r . For the sake of clarity value re-arrangement, source excitation,

value output and the simulation domain termination with the ABC are hidden in Al-

gorithm 4.

Frequency dispersion is realised with the ADE approach, which enforces a circu-

lar calculation order between the mathematical quantities: D → E → H . Therefore,

a number of changes were introduced into Algorithm 4 in comparison with the clas-

sical HSG method described by Algorithm 3:

• every electric field E calculation is preceded with the electric flux density D

calculation for both main and subgrids (lines: 1, 6, 17 and 23),

• IS current from magnetic field in the main grid Ha (I S) is injected into the

current flux density Db (I S) of the subgrid (lines: 7, 18 and 24),

• electric field at the IS in the subgrid Eb (I S) is re-calculated, triggered by the

change of the electric flux density Db (I S) (lines: 8, 19 and 25),
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• identical operations occur at the OS: magnetic field in the subgrid Hb (OS) in-

jects the OS current into electric flux density of the main grid Da (OS) (line: 12),

• electric field at the OS in the main grid Ea (OS) is re-calculated, stimulated by

the electric flux density change (line: 13).

1: calc Da (∗) , Ea (∗)
2: iface Ea (I S)

3: for m ∈ [1, r−1
2 ] do

4: calc Hb (∗)
5: infl I S : Ea (I S) → Hb (I S)
6: calc Db (∗) , Eb (∗)
7: infl I S : Ha (I S) → Db (I S)
8: recalc Eb (I S)
9: end for

10: calc Hb (∗)
11: infl I S : Ea (I S) → Hb (I S)
12: infl OS : Hb (OS) → Da (OS)
13: recalc Ea (OS)

14: calc Ha (∗)
15: iface Ha (I S)

16: for m ∈ [1, r−1
2 ] do

17: calc Db (∗) , Eb (∗)
18: infl I S : Ha (I S) → Db (I S)
19: recalc Eb (I S)
20: calc Hb (∗)
21: infl I S : Ea (I S) → Hb (I S)
22: end for

23: calc Db (∗) , Eb (∗)
24: infl I S : Ha (I S) → Db (I S)
25: recalc Eb (I S)
26: infl OS : Eb (OS) → Ha (OS)

Algorithm 4: Dispersive HSG pseudocode. Abbreviations “calc”, “recalc”, “iface” and
“infl” stand for calculate, re-calculate, calculate interface and calculate influence.
Calculate and re-calculate are the regular FDTD updates, calculate interface is the
spatial and temporal interpolation at the OS–IS interface, and calculate influence is
the equivalent magnetic or electric current transfer via the OS or IS.

Apart from the modifications introduced due to the circular components de-

pendency, the dispersive HSG algorithm is exactly the same as the classical HSG

approach. The symmetry of the classical HSG scheme is also preserved in the dis-

persive HSG method.

5.4 Mathematical Formulation

This section describes the mathematical formulation of the frequency dispersive

HSG method. Only the equations different from the classical HSG approach are

presented here.
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5.4.1 Electric Flux Density Calculation

Equations for calculation of the electric flux density values remain unchanged rela-

tive to the standard FD–FDTD method. Symbol g denotes a generic calculation grid

with g ∈ [a, b], where a and b denote the main and subgrids respectively. Equations

shown below already accommodate the origin shifts for easier implementation in a

computer programming language:

Dn
xg

(
i , j , k

)= Dn−1
xg

(
i , j , k

)+∆tg ·



H n
zg

(
i , j , k

)−H n
zg

(
i , j −1, k

)
∆yg

−
H n

y g

(
i , j , k

)−H n
y g

(
i , j , k −1

)
∆zg

−J n
sr c, xg

(
i , j , k

)


, (5.10)

where i ∈ [igmi n , igmax −1]; j ∈ [ jgmi n +1, jgmax −1]; k ∈ [kgmi n +1,kgmax −1];

Dn
y g

(
i , j , k

)= Dn−1
y g

(
i , j , k

)+∆tg ·



H n
xg

(
i , j , k

)−H n
xg

(
i , j , k −1

)
∆zg

−
H n

zg

(
i , j , k

)−H n
zg

(
i −1, j , k

)
∆xg

−J n
sr c, y g

(
i , j , k

)


, (5.11)

where i ∈ [igmi n +1, igmax −1]; j ∈ [ jgmi n , jgmax −1]; k ∈ [kgmi n +1, kgmax −1];

Dn
zg

(
i , j , k

)= Dn−1
zg

(
i , j , k

)+∆tg ·



H n
y g

(
i , j , k

)−H n
y g

(
i −1, j , k

)
∆xg

−
H n

xg

(
i , j , k

)−H n
xg

(
i , j −1, k

)
∆yg

−J n
sr c, zg

(
i , j , k

)


, (5.12)

where i ∈ [igmi n +1, igmax −1]; j ∈ [ jgmi n +1, jgmax −1]; k ∈ [kgmi n , kgmax −1].
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5.4.2 Electric Field Calculation

Electric field calculation is expressed with the ADE from the FD–FDTD approach.

Symbol g stands for a generic computation grid, where g ∈ [a, b].

E n
g

(
i , j , k

)=Φ1g
(
i , j , k

)
Dn

g

(
i , j , k

)
−Φ2g

(
i , j , k

)
Dn−1

g

(
i , j , k

)
+Φ3g

(
i , j , k

)
Dn−2

g

(
i , j , k

)
+Φ4g

(
i , j , k

)
E n−1

g

(
i , j , k

)
−Φ5g

(
i , j , k

)
E n−2

g

(
i , j , k

)
,

(5.13)

where

Φ1g
(
i , j , k

)= τ
(
i , j , k

)+∆t

ϕ3g
(
i , j , k

) , Φ4g
(
i , j , k

)= ϕ4g
(
i , j , k

)
ϕ3g

(
i , j , k

) ,

Φ2g
(
i , j , k

)= 2τ
(
i , j , k

)+∆t

ϕ3g
(
i , j , k

) , Φ5g
(
i , j , k

)= ϕ1g
(
i , j , k

)
ϕ3g

(
i , j , k

) ,

Φ3g
(
i , j , k

)= τ
(
i , j , k

)
ϕ3g

(
i , j , k

)
with

ϕ1g
(
i , j , k

)= ε0ε∞
(
i , j , k

)
τ
(
i , j , k

)
,

ϕ2g
(
i , j , k

)= ε0εs
(
i , j , k

)+σ(
i , j , k

)
τ
(
i , j , k

)
,

ϕ3g
(
i , j , k

)=ϕ1g
(
i , j , k

)+∆tϕ2g
(
i , j , k

)+ ∆t 2σ
(
i , j , k

)
2

,

ϕ4g
(
i , j , k

)= 2ϕ1g
(
i , j , k

)+∆tϕ2g
(
i , j , k

)− ∆t 2σ
(
i , j , k

)
2

.
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Electric field calculation ranges change depending on the field component di-

rection x, y, z:

Eg =


Exg : [igmi n , igmax −1]; [ jgmi n +1, jgmax −1]; [kgmi n +1, kgmax −1];

Ey g : [igmi n +1, igmax −1]; [ jgmi n , jgmax −1]; [kgmi n +1, kgmax −1];

Ezg : [igmi n +1, igmax −1]; [ jgmi n +1, jgmax −1]; [kgmi n , kgmax −1].
(5.14)

5.4.3 Electric Flux Density Component Re-Arrangement

In order to calculate the electric flux density and the electric field values, the pre-

vious time-step values n −1 and n −2 of the electric flux density at all locations in

both grids have to be preserved.

Since the electric field calculation involves the field values of one and two time-

steps back in the past, also the electric field values at n−1 and n−2 have to be saved.

Re-arrangement procedure for the electric field is identical to the one presented

below.

Main grid

Dn−2
xa (∗) ←− Dn−1

xa (∗) , Dn−1
xa (∗) ←− Dn

xa (∗) ,

Dn−2
y a (∗) ←− Dn−1

y a (∗) , Dn−1
y a (∗) ←− Dn

y a (∗) , (5.15)

Dn−2
za (∗) ←− Dn−1

za (∗) , Dn−1
za (∗) ←− Dn

za (∗) .

Subgrid

Dn−2
xb (∗) ←− Dn−1

xb (∗) , Dn−1
xb (∗) ←− Dn

xb (∗) ,

Dn−2
yb (∗) ←− Dn−1

yb (∗) , Dn−1
yb (∗) ←− Dn

yb (∗) , (5.16)

Dn−2
zb (∗) ←− Dn−1

zb (∗) , Dn−1
zb (∗) ←− Dn

zb (∗) .

5.4.4 Equivalent Currents Calculation at Huygens Surfaces

This section highlights the changes necessary in the classical HSG method to incor-

porate the frequency dispersion.
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Electric Flux Density

The major alteration to the classical HSG method consists in the replacement of

electric field with the electric flux density at the receiving side of the Inner and Outer

Surface currents.

Inner Surface

After the replacement of electric field with the electric flux density in the IS influence

equation, the auxiliary coefficient Γ2b
(
i , j , k

)
defined in (4.40) is substituted with

a subgrid temporal increment ∆tb . Essentially, the coefficient Γ2b
(
i , j , k

)
incorpo-

rated two important parameters: electric permittivity ε and electric conductivity σ.

Parameter ε vanishes because the constitutive relationshipD = εE is no longer

used. The Ampère’s law is solved directly for D. Parameter σ, responsible for the

heat energy loss, is transferred to the ADE. Apart from the Γ2b
(
i , j , k

)
coefficient

substitution the IS influence equations are identical to the classical HSG approach.

Equations are listed below for the reader’s convenience. Temporal interpolation co-

efficients values Υ1,Υ2 depend on the subgrid time-step value m (see Section 5.4.6

for details). Parameter D̈ denotes the electric flux density value obtained with a nor-

mal FDTD update equation.

Correct Dxb :

Dn
xb

(
i , jbI L , k

)= D̈n
xb

(
i , jbI L , k

)− ∆tb

∆yb

(
Υ1 Ĥ n−1

za

(
i , jbI L , k

)+Υ2 Ĥ n
za

(
i , jbI L , k

))
,

Dn
xb

(
i , jbI R , k

)= D̈n
xb

(
i , jbI R , k

)+ ∆tb

∆yb

(
Υ1 Ĥ n−1

za

(
i , jbI R , k

)+Υ2 Ĥ n
za

(
i , jbI R , k

))
,

(5.17)

where i ∈ [ibI L , ibI R −1]; k ∈ [kbI L ,kbI R ].

Dn
xb

(
i , j , kbI L

)= D̈n
xb

(
i , j , kbI L

)+ ∆tb

∆zb

(
Υ1 Ĥ n−1

y a

(
i , j , kbI L

)+Υ2 Ĥ n
y a

(
i , j , kbI L

))
,

Dn
xb

(
i , j , kbI R

)= D̈n
xb

(
i , j , kbI R

)− ∆tb

∆zb

(
Υ1 Ĥ n−1

y a

(
i , j , kbI R

)+Υ2 Ĥ n
y a

(
i , j , kbI R

))
,

(5.18)

where i ∈ [ibI L , ibI R −1]; j ∈ [ jbI L , jbI R ].
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Correct D yb :

Dn
yb

(
i , j , kbI L

)= D̈n
yb

(
i , j , kbI L

)− ∆tb

∆zb

(
Υ1 Ĥ n−1

xa

(
i , j , kbI L

)+Υ2 Ĥ n
xa

(
i , j , kbI L

))
,

Dn
yb

(
i , j , kbI R

)= D̈n
yb

(
i , j , kbI R

)+ ∆tb

∆zb

(
Υ1 Ĥ n−1

xa

(
i , j , kbI R

)+Υ2 Ĥ n
xa

(
i , j , kbI R

))
,

(5.19)

where j ∈ [ jbI L , jbI R −1]; i ∈ [ibI L , ibI R ].

Dn
yb

(
ibI L , j , k

)= D̈n
yb

(
ibI L , j , k

)+ ∆tb

∆xb

(
Υ1 Ĥ n−1

za

(
ibI L , j , k

)+Υ2 Ĥ n
za

(
ibI L , j , k

)
,
)

,

Dn
yb

(
ibI R , j , k

)= D̈n
yb

(
ibI R , j , k

)− ∆tb

∆xb

(
Υ1 Ĥ n−1

za

(
ibI R , j , k

)+Υ2 Ĥ n
za

(
ibI R , j , k

))
,

(5.20)

where j ∈ [ jbI L , jbI R −1]; k ∈ [kbI L ,kbI R ].

Correct Dzb :

Dn
zb

(
ibI L , j , k

)= D̈n
zb

(
ibI L , j , k

)− ∆tb

∆xb

(
Υ1 Ĥ n−1

y a

(
ibI L , j , k

)+Υ2 Ĥ n
y a

(
ibI L , j , k

))
,

Dn
zb

(
ibI R , j , k

)= D̈n
zb

(
ibI R , j , k

)+ ∆tb

∆xb

(
Υ1 Ĥ n−1

y a

(
ibI R , j , k

)+Υ2 Ĥ n
y a

(
ibI R , j , k

))
,

(5.21)

where k ∈ [kbI L ,kbI R −1]; j ∈ [ jbI L , jbI R ].

Dn
zb

(
i , jbI L , k

)= D̈n
zb

(
i , jbI L , k

)+ ∆tb

∆yb

(
Υ1 Ĥ n−1

xa

(
i , jbI L , k

)+Υ2 Ĥ n
xa

(
i , jbI L , k

))
,

Dn
zb

(
i , jbI R , k

)= D̈n
zb

(
i , jbI R , k

)− ∆tb

∆yb

(
Υ1 Ĥ n−1

xa

(
i , jbI R , k

)+Υ2 Ĥ n
xa

(
i , jbI R , k

))
,

(5.22)

where k ∈ [kbI L ,kbI R −1]; i ∈ [ibI L , ibI R ].
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Outer Surface

Also at the OS the auxiliary coefficient Γ2a
(
i , j , k

)
defined in (4.40) is substituted

with the main grid temporal increment value ∆ta . OS influence equations are given

below.

Correct Dxa :

Dn
xa

(
i , j , kaOL

)= D̈n
xa

(
i , j , kaOL

)− ∆ta

∆za
H n

yb

(
ib , jb , kbOL − r+1

2

)
,

Dn
xa

(
i , j , kaOR

)= D̈n
xa

(
i , j , kaOR

)+ ∆ta

∆za
H n

yb

(
ib , jb , kbOR + r−1

2

)
,

(5.23)

where

i ∈ [iaOL , iaOR −1], j ∈ [ jaOL , jaOR ],

ib = ibOL + r (i − iaOL)+ r−1
2 , jb = jbOL + r ( j − jaOL).

Dn
xa

(
i , jaOL , k

)= D̈n
xa

(
i , jaOL , k

)+ ∆ta

∆ya
H n

zb

(
ib , jbOL − r+1

2 , kb
)

,

Dn
xa

(
i , jaOR , k

)= D̈n
xa

(
i , jaOR , k

)− ∆ta

∆ya
H n

zb

(
ib , jbOR + r−1

2 , kb
)

,

(5.24)

where

i ∈ [iaOL , iaOR −1], k ∈ [kaOL ,kaOR ],

ib = ibOL + r (i − iaOL)+ r−1
2 , kb = kbOL + r (k −kaOL).

Correct D y a :

Dn
y a

(
iaOL , j , k

)= D̈n
y a

(
iaOL , j , k

)− ∆ta

∆xa
H n

zb

(
ibOL − r+1

2 , jb , kb
)

,

Dn
y a

(
iaOR , j , k

)= D̈n
y a

(
iaOR , j , k

)+ ∆ta

∆xa
H n

zb

(
ibOR + r−1

2 , jb , kb
)

,

(5.25)

where

j ∈ [ jaOL , jaOR −1], k ∈ [kaOL ,kaOR ],
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jb = jbOL + r ( j − jaOL)+ r−1
2 , kb = kbOL + r (k −kaOL).

Dn
y a

(
i , j , kaOL

)= D̈n
y a

(
i , j , kaOL

)+ ∆ta

∆za
H n

xb

(
ib , jb , kbOL − r+1

2

)
,

Dn
y a

(
i , j , kaOR

)= D̈n
y a

(
i , j , kaOR

)− ∆ta

∆za
H n

xb

(
ib , jb , kbOR + r−1

2

)
,

(5.26)

where

i ∈ [iaOL , iaOR ], j ∈ [ jaOL , jaOR −1],

ib = ibOL + r (i − iaOL), jb = jbOL + r ( j − jaOL)+ r−1
2 .

Correct Dza :

Dn
za

(
i , jaOL , k

)= D̈n
za

(
i , jaOL , k

)− ∆ta

∆ya
H n

xb

(
ib , jbOL − r+1

2 , kb
)

,

Dn
za

(
i , jaOR , k

)= D̈n
za

(
i , jaOR , k

)+ ∆ta

∆ya
H n

xb

(
ib , jbOR + r−1

2 , kb
)

,

(5.27)

where

i ∈ [iaOL , iaOR ], k ∈ [kaOL ,kaOR −1],

ib = ibOL + r (i − iaOL), kb = kbOL + r (k −kaOL)+ r−1
2 .

Dn
za

(
iaOL , j , k

)= D̈n
za

(
iaOL , j , k

)+ ∆ta

∆xa
H n

yb

(
ibOL − r+1

2 , jb , kb
)

,

Dn
za

(
iaOR , j , k

)= D̈n
za

(
iaOR , j , k

)− ∆ta

∆xa
H n

yb

(
ibOR + r−1

2 , jb , kb
)

,

(5.28)

where

j ∈ [ jaOL , jaOR ], k ∈ [kaOL ,kaOR −1],

jb = jbOL + r ( j − jaOL), kb = kbOL + r (k −kaOL)+ r−1
2 .
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5.4.5 Absorbing Boundary Condition Calculation

According to practical experiments conducted by Bérenger [98–102] PML boundary

condition slightly contributes to the HSG method’s stability. Therefore, the disper-

sive HSG method applies the classical split PML [27, 141] toD andH components

in both main and subgrids. As usual in the dispersive approach with ADE, the elec-

tric field components in the PML region have to be re-calculated straight after the

calculation ofD in the PML.

For the sake of brevity the mathematical formulation of split PML is not given in

this work. Books by Bérenger [142] and Taflove [16] present the theory and practice

of the PML application in extensive detail.

5.4.6 Calculation Order

This section illustrates the calculation order of the dispersive HSG method. Sym-

bol “*” stands for the entire spatial domain. Right-directed horizontal arrow “−→”

marks the equivalent current injection at the IS or OS. Section number containing

the relevant equations is given on each line of the algorithm. Horizontal line in the

middle of the calculation order separates two symmetric parts of the dispersive HSG

method. Parameters Υ1,Υ2 denote the temporal interpolation coefficients. These

coefficients control the contribution of the adjacent main grid nodes to the tem-

porally interpolated main grid value. Values of Υ1,Υ2 change depending on the

subgrid time-step m. Parameters m1, m2 provide the half time-step shift between

the electric and magnetic field components in the subgrid. Comments on the HSG

method implementation with a single subgrid iterator m are also applicable to the

dispersive HSG method implementation (see Section 4.7.7).

1. Calculate coefficientsΦ1g (∗) ,Φ2g (∗) ,Φ3g (∗) ,Φ4g (∗) ,Φ5g (∗) , Z1g (∗) , Z2g (∗),

where g ∈ [a, b] (Sections 4.7.1 and 5.4.2)

2. Generate excitation source signal

3. Enter main grid time loop n ∈ [1,nmax] :

(a) Re-arrange Da (∗) , Ea (∗) , Ĥa (I S) (Sections 4.7.3 and 5.4.3 and (4.48))

(b) Calculate Ha (∗) (Section 4.7.1)

(c) Calculate Ha (P ML)
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(d) Calculate Ĥa (I S) (Figure 4.15)

(e) Re-arrange Db (∗) , Eb (∗) ( (4.50) and (5.15))

(f) Calculate Db (∗) , Eb (∗) (Sections 4.7.2 and 5.4.1)

(g) Calculate Db (P ML) , Eb (P ML)

(h) Calculate Ĥa (I S) −→ Db (I S) , Υ1 = 1, Υ2 = 0 (Section 5.4.4)

(i) Re-calculate Eb (I S) (Section 4.7.2)

(j) Enter subgrid time loop 1: m ∈ [1, r−1
2 ] and m1 = m + r−1

2

i. Calculate Hb (∗) (Section 4.7.1)

ii. Calculate Hb (P ML)

iii. Calculate Êa (I S) −→ Hb (I S) , Υ1 = r−m
r , Υ2 = m

r ( (4.97))

iv. Re-arrange Db (∗) , Eb (∗) ( (4.50) and (5.15))

v. Calculate Db (∗) , Eb (∗) (Sections 4.7.2 and 5.4.1)

vi. Calculate Db (P ML) , Eb (P ML)

vii. Calculate Ĥa (I S) −→ Db (I S) , Υ1 = r−m1
r , Υ2 = m1

r (Section 5.4.4)

viii. Re-calculate Eb (I S) (Section 4.7.2)

(k) Calculate Eb (OS) −→ Ha (OS) ( (4.109))

(l) Calculate Da (∗) , Ea (∗) (Sections 4.7.2 and 5.4.1)

(m) Calculate Da (P ML) , Ea (P ML)

(n) Calculate Ea (sr c) ( (4.44))

(o) Re-arrange Êa (I S) ( (4.48))

(p) Calculate Êa (I S) (Table 4.1)

(q) Calculate Hb (∗) (Section 4.7.1)

(r) Calculate Hb (P ML)

(s) Calculate Êa (I S) −→ Hb (I S) , Υ1 = 1, Υ2 = 0 ( (4.97))

(t) Enter fine grid time loop 2: m ∈ [ r+1
2 , r ] and m2 = m − r−1

2

i. Re-arrange Db (∗) , Eb (∗) ( (4.50) and (5.15))

ii. Calculate Db (∗) , Eb (∗) (Sections 4.7.2 and 5.4.1)

iii. Calculate Db (P ML) , Eb (P ML)
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iv. Calculate Ĥa (I S) −→ Db (I S) , Υ1 = r−m2
r , Υ2 = m2

r (Section 5.4.4)

v. Re-calculate Eb (I S) (Section 4.7.2)

vi. Calculate Hb (∗) (Section 4.7.1)

vii. Calculate Hb (P ML)

viii. Calculate Êa (I S) −→ Hb (I S) , Υ1 = r−m
r , Υ2 = m

r ( (4.97))

(u) Calculate Hb (OS) −→ Da (OS) ( (5.22))

(v) Re-calculate Ea (OS) (Section 4.7.2)

(w) Output Ea (∗) , Ha (∗)

(x) Output Eb (∗) , Hb (∗)

4. Finalise simulation



Chapter 6

Numerical Results

This chapter presents numerical simulation results of the dispersive HSG method.

Five major testing scenarios with artificial material placement verify correct me-

thod’s behaviour in the Debye media. One realistic test case shows the wave pro-

pagation inside of human torso. Finally, Section 6.14 gives the details of the HSG

memory and CPU time consumption.

6.1 Simulation Settings

In context of this work the words “coarse” and “fine” grids refer to the all coarse and

all fine FDTD grids, while words “main” and “subgrid” refer to the main and sub-

grid regions of the HSG. Abbreviations FDTD and HSG refer to the Finite-Difference

Time-Domain and the Huygens Subgridding methods. Split Perfectly Matched Layer

(PML) bounds the simulation domain [27, 141]. PML thickness of 10 and 6 points is

used for the main and subgrids, unless stated otherwise. Table 6.1 lists the simula-

tion settings. Columns “HSG” and “Fine” show settings specific to the HSG and the

all fine grid reference.

The following notation is used in Table 6.1: symbols ni ,n j and nk denote the

computation domain ranges in x, y and z directions, tmax shows the maximum

amount of time steps and r stands for the subgridding ratio. Parameters OL and OR

specify the location of the Outer Huygens Surface (OS), where OL sets the minimum

(leftmost) point and OR sets the maximum (rightmost) point in x, y and z directions.

The Inner Huygens Surface (IS) is defined in an identical manner by parameters I L

and I R, where I L and I R denote the minimum and maximum points in x, y and

z axes respectively. Parameter zoneb , given in subgrid points, specifies the buffer

147
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Parameter HSG Fine

ni ,n j ,nk 1 ∼ 80 1 ∼ 400
tmax 2000 10000
r 5
OL 29, 29, 29
I L 32, 32, 32
I R 48, 48, 48
OR 51, 51, 51
zoneb 5
npmla 10
npmlb 6
source type soft soft
source location 15, 40, 40 75, 200, 200
∆sa 10 mm −
∆sb 2 mm 2 mm
∆ta 0.179 ps −
∆tb 3.582 ps 3.582 ps
NC F L 0.93 0.93
χa 5 −
χb 25 25

Table 6.1: Simulation settings
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zone thickness in between the OS and the beginning of PML in the subgrid. PML

thickness in the main and subgrids is denoted by npmla and npmlb and is measured

in main and subgrid points respectively. Rows “source type” and “location” list the

excitation source type [143] and location in the x, y and z coordinates. Spatial and

temporal increments in the main and subgrids are given by ∆sa ,∆sb and ∆ta ,∆tb .

Parameter NC F L specifies the value of the Courant-Friedrichs-Lewy number. Values

χa and χb denote the spatial resolution of the main and subgrids (see Section 6.3 for

more details on spatial resolution).

In this work a Gaussian pulse, formed according to (6.1), serves as the excitation

wave form:

J t
z = exp

[
−

(
t −3T

T

)2]
, (6.1)

where

T = 1

2 fmax
, fmax = 6·109 Hz.

J t
z is the z component of the current density at time moment t , T is the period of

pulse fluctuation and fmax is the maximum wave frequency. Figures 6.1a and 6.1b

depict the excitation wave form in time and frequency domains. Signal is the collec-

tion of electric field amplitude values measured during the simulation time at the

given observation location. Title of each plot in this work contains the information

on the excitation waveform, boundary condition and its thickness, propagation en-

vironment and object material, e.g. title of Figure 6.1a signifies that Gaussian pulse

was used as the excitation waveform, PML of thickness 10 in main and 6 in subgrid

terminated the simulation domain. Propagation environment was set to Air with

the Fat object. When referred to propagation environment material or a tissue de-

scription first letter of the word is capitalised, as in Air, Skin, Fat, Bone, Muscle and

Heart. Notions of weak and strong Debye media used in this work relate to the De-

bye materials with low and high electric conductivity, e.g. Fat and Bone are weak,

whereas Skin, Muscle and Heart are strong Debye media.

Human body tissue parameters for the Debye relaxation model fitted for the high

frequency region of 100 MHz to 6 GHz are listed in Table 6.2. Symbols σ,εs and

ε∞ denote the electric conductivity, and relative static and optical permittivities,

respectively. Parameter τ specifies the dipole relaxation time in molecules.
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Figure 6.1: Initial Gaussian pulse signal at excitation location in Air. Ordinate shows
normalised values in both time and frequency domain plots.
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Japanese researchers from the RIKEN centre1 segmented each human body tis-

sue within a high resolution MRI data and assigned a material code to each tissue.

The digital human phantom and the mapping of material codes to human body tis-

sues was kindly provided by RIKEN. Material codes are listed in the first column

of Table 6.2. José Manuel Padilla González2 and Aleksandr Kudasev3 obtained the

media parameters for the one pole Debye relaxation model from the four pole Cole–

Cole parameters [33] using the Newton–Raphson data fitting technique [144].

Code Parameter σ [S/m] εs ε∞ τ [ps]

0 Air 0.000 1.000 1.000 0.000

1 Cerebral Cortex 0.595 56.444 33.057 0.352

2 White Matter 0.348 41.281 24.371 0.336

3 Cerebellum 0.826 58.155 35.195 0.683

4 Midbrain 0.348 41.281 24.371 0.336

5 Eyeball 1.445 67.711 10.308 8.271

6 Optic Nerve 0.360 34.749 20.980 0.365

7 Cornea 1.069 57.842 32.372 0.288

8 Crystalline Lens 0.346 37.825 18.283 0.211

9 Pituitary Gland 0.809 60.543 27.708 0.177

10 Thalamus 0.595 56.444 33.057 0.352

11 Hypothalamus 0.595 56.444 33.057 0.352

12 Pineal Gland 0.809 60.543 27.708 0.177

13 Tongue 0.693 56.523 28.257 0.205

14 Cerebrospinal Fluid 2.144 70.400 33.148 0.182

15 Adrenal Gland, Right 0.809 60.543 27.708 0.177

16 Urinary Bladder 0.300 19.331 9.675 0.208

18 Large Intestine 0.716 61.121 34.665 0.312

20 Duodenum 0.919 66.279 31.503 0.190

21 Esophagus 0.919 66.279 31.503 0.190

23 Gall Bladder 1.042 60.735 28.181 0.159

1Advanced Center for Computing and Communication, Integrated Simulation of Living Matter

Group, RIKEN, Japan, himeno@riken.jp
2School of Engineering, The University of Seville, Spain,

jospadgon@alum.us.es
3School of Computer Science, The University of Manchester, United Kingdom,

aleksandr.kudasev@student.manchester.ac.uk

mailto: himeno@riken.jp
mailto:jospadgon@alum.us.es
mailto:aleksandr.kudasev@student.manchester.ac.uk
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Code Parameter σ [S/m] εs ε∞ τ [ps]

24 Heart 1.019 63.549 34.910 0.289

25 Kidney, Right 0.857 67.508 39.860 0.606

26 Liver 0.520 50.153 27.986 0.357

27 Lung, Right 0.452 38.254 21.436 0.274

29 Pancreas 0.809 60.543 27.708 0.177

30 Prostate Gland 0.809 60.543 27.708 0.177

31 Small Intestine 1.701 65.790 39.191 0.459

32 Spleen 0.844 62.585 37.115 0.427

33 Stomach 0.919 66.279 31.503 0.190

37 Nasal Cavity 0.000 1.000 1.000 0.000

38 Thyroid Gland 0.809 60.551 27.734 0.177

39 Trachea 0.565 43.185 22.140 0.225

45 Bone 0.104 14.169 7.363 0.341

48 Fat 0.037 5.531 3.998 0.236

49 Muscle 0.747 56.932 28.001 0.187

51 Skin 0.541 47.930 29.851 0.436

55 Diaphragm 0.747 56.931 28.001 0.187

56 Seminal Vesicle 0.809 60.543 27.708 0.177

57 Erectile Tissue 1.256 62.900 30.598 0.210

80 Spinal Cord 0.360 34.749 20.980 0.365

82 Paranasal Sinus 0.000 1.000 1.000 0.000

83 Testicle 0.934 62.064 31.306 0.211

84 Kidney, Left 0.857 67.508 39.860 0.606

85 Lung, Left 0.452 38.254 21.436 0.274

86 Epiglottis 0.493 44.559 19.392 0.300

87 Oral Cavity 0.000 1.000 1.000 0.000

88 External Ear 0.000 1.000 1.000 0.000

89 Salivary Gland 0.809 60.543 27.708 0.177

90 Middle Ear 0.055 7.318 3.962 0.377

91 Inner Ear 2.144 70.400 33.148 0.182

92 Pharynx 0.565 43.185 22.140 0.225

94 Adrenal Gland, Left 0.809 60.543 27.708 0.177

Table 6.2: Media parameters for Debye relaxation model, all materials
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6.2 Testing Scenarios Overview

For the majority of test cases the signal is shown in both time and frequency do-

mains for a number of observation points placed along the central line ya = za = 40.

The main reason in illustrating multiple observation points is educational. Tracking

the HSG signal at various locations will provide a better understanding and overview

of the HSG accuracy relative to the all fine and all coarse grid FD–FDTD results.

Scenarios 1 to 4 present the basic HSG accuracy tests. Scenario 1 illustrates cor-

rect HSG behaviour with the OS–IS interface in the Air and strong and weak Debye

media in the subgrid. Scenario 1 is equivalent to non-dispersive HSG tests reported

in [102]. A homogeneous Debye medium covers the OS–IS interface in Scenario 2,

while the excitation source is placed in the main grid. Scenario 3 presents a more

sophisticated case with two different Debye media: one filling the OS–IS region and

the other occupying the subgrid. Results with the excitation locations in the main

and in the subgrid are reported. Scenario 4 offers the data from the HSG simulation

with four distinct Debye media surrounding the subgrid region.

Scenario 5 tests the effect of electric conductivity σ on the visibility of the HSG

instability. Two realistic scenarios with a human torso in the main and human heart

in the subgrid conclude the HSG accuracy verification. Finally, the HSG computa-

tional efficiency in terms of memory and execution time is measured and reported

in Section 6.14.

6.3 Setting of Spatial Resolution

This section illustrates the process of the spatial resolution calculation. Formulae

for the frequency threshold and the spatial resolution are given in Section 6.3.1.

Spatial resolution values for Scenarios 1 to 4 are calculated in Section 6.3.1 and for

Scenario of human torso—in Section 6.3.2.

6.3.1 Scenarios 1 to 4

The frequency spectrum threshold value SdB =−20 dB is chosen for Scenarios 1 to 4.

The spectrum threshold value SdB is calculated as:

SdB = 20log10 (S) , (6.2)
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where S denotes the frequency spectrum.4 From (6.2) the frequency spectrum value

S at the spectrum threshold SdB can be obtained as:

S = 10SdB /20. (6.3)

Substituting selected spectrum threshold of −20 dB into (6.3) yields the spectrum

value S = 0.1.

According to the excitation signal plot in Figure 6.1b the wave frequency equals

to 6 GHz at the normalised frequency spectrum value of 0.1. This frequency will be

chosen as the highest frequency of interest for Scenarios 1 to 4.

The spatial resolution (number of elements per wavelength) of all coarse and all

fine grid cases in the Air is calculated according to the following formula:

χ= λ

∆s
= c

fw∆s
, (6.4)

where

λ= c

fw
. (6.5)

Symbols χ, λ,∆s, c, fw in (6.4) and (6.5) denote the spatial resolution, wave-

length, spatial discretisation step, speed of light in Air and the highest wave fre-

quency respectively.

The all coarse and all fine grid resolutions at the spectrum threshold of −20 dB

are calculated by substituting ∆sa = 10 mm,∆sb = 2 mm and fw = 6 GHz into (6.4).

The resolution values for Scenarios 1 to 4 shown in the two last rows of Table 6.1 are

χa = 5 and χb = 25 elements per wavelength.

6.3.2 Scenario of Human Torso

Using the same frequency spectrum threshold as in Scenarios 1 to 4 SdB = −20dB

leads to the same frequency spectrum value of 0.1 and the same highest wave fre-

quency of 6 GHz. The frequency spectrum S = 0.1 is obtained by substituting SdB =
−20 dB into (6.3).

Figure 6.2 shows the initial excitation source signal in Scenario of human torso.

According to Figure 6.2b the wave frequency equals to 6 GHz at the frequency spec-

trum of 0.1.

4In case power spectrum P is used in place of frequency spectrum S, the power spectrum thresh-

old is calculated as PdB = 10log10 (P ).
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Figure 6.2: Initial Gaussian pulse signal at excitation location in Air, human torso.
Ordinate shows normalised values in both time and frequency domain plots.
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The all coarse and all fine grid resolutions at the spectrum threshold of −20 dB

are calculated with (6.4) using the spatial discretisation steps ∆sa = 5 mm,∆sb =
1 mm and the wave frequency fw = 6 GHz. The all coarse and all fine grid resolution

values χa = and χb = are listed in the last two rows of Table 6.5.

6.4 Scenario 1. HSG in Air

6.4.1 Scenario Setting

Testing Scenarios 1a and 1b show the signal propagation in the non-dispersive HSG

method. The aims of these scenarios are (i) to remind the reader of the HSG be-

haviour in frequency-independent environments and (ii) illustrate the effect of ex-

citation source placement on the visibility of the HSG instability. Figure 6.3 shows

a 2D cross-section of Scenario 1a setting. Scenario 1b is identical with the only dif-

ference in placement of the excitation and observation points. In Scenario 1b the

excitation source Tx a is located in the middle of the subgrid at xa = 40 and the ob-

servation point Rx a at xa = 15.

In Scenario 1a the excitation Tx a is placed in the main grid in the Air environ-

ment at xa = 15, while in Scenario 1b the excitation is located in the middle of the

subgrid in the Fat environment at xa = 40. Excitation in the Air allows the high

frequency components to reach the HSG interface and cause spurious frequency.

The cut-off frequency of Air in the main grid is 10.073 GHz and in the subgrid is

50.367 GHz. Excitation signal in the main grid contains frequencies up to 6 GHz,

therefore all major signal components reach the subgridding interface.

In case of excitation source in the Fat the high frequency components are par-

tially absorbed by the Fat medium. By the time the propagating signal reaches the

HSG interface some of the high frequency has vanished and less spurious signals are

produced at the interface. The cut-off frequency of Fat in the subgrid is 21.888 GHz

and in the main grid is 4.378 GHz.

Therefore, it is expected to observe an HSG instability later in Scenario 1b with

the excitation located in the Fat in the subgrid, compared to Scenario 1a with the

excitation placed in the Air in the main grid.
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ax401~11 70~8035 45

Vacuum
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o

Figure 6.3: Cross-section of Scenario 1a setting, plane za = 40. Dotted lines denote
the Outer and Inner Huygens Surfaces (OS, IS). Symbols “*” and “o” mark the ex-
citation and observation locations respectively. Symbol “∼” specifies an inclusive
range with integer stepping as in xa ∈ [1,11]. Fat object in Air environment. Fat oc-
cupies the entire Inner Box. Inner Box is a subgrid region bound by the IS excluding
a minimum separation of 3∆sa between the IS and the Inner Box in all coordinate
directions x, y, z. The Inner Box cross-section is shown in green colour. OS, IS are
placed in the Air. Scenario 1a is symmetric relative to the centre line. Cross-section
at plane ya = 40 is the same as presented here.
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6.4.2 Time Domain Signal

Figures 6.4a and 6.4b show the signal in time domain after it has travelled an equal

distance of 25∆sa in Scenarios 1a and 1b. When the source is placed in the main grid

in non-dispersive medium (Scenario 1a) the instability in HSG is visible 400 time-

steps earlier, than when the source is located in the subgrid in dispersive medium

(Scenario 1b). Compare Figure 6.4a with ti nst = 1100 and Figure 6.4b with ti nst =
1500, where ti nst denotes the time when the instability becomes visible. The value

of ti nst is taken from the signal plots. It signifies the time moment at which the

minor amplitude fluctuations become visible in the plot.

Figure 6.4c shows the time domain signal of Scenario 1b measured in a simula-

tion with 105 main grid iterations. Figure 6.4c indicates that instability in HSG with

the source placed inside of a dispersive medium becomes visible at a much later

time. At time ta = 4000 the instability will overtake the maximum amplitude of the

original signal.

6.5 Scenario 2a.

HSG in Homogeneous Strong Debye Medium

Scenarios described in this section illustrate the HSG accuracy, when the OS–IS in-

terface is covered by a homogeneous Debye medium and the excitation source is

positioned in the main grid.

6.5.1 Scenario Setting

Purpose of Scenario 2a is to show the signal propagation modelled with HSG when

the OS–IS interface is covered by a strong Debye medium. It is expected that na-

tive HSG instabilities occurring at the interface will be suppressed by a strong dis-

persive medium. Figure 6.5 depicts a 2D cross-section of Scenario 2a setting. Ex-

citation source is placed at Tx a = 15 and two observation points Rx a = 27,40 are

located at the centre line ya = za = 40.

6.5.2 Time Domain Signal

Figure 6.6 depicts the signal in time domain at two observation locations Rx a =
27,40. In the simulation domain where xa ∈ [25,55] the wave propagates inside the
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Figure 6.4: Time domain signal of Scenarios 1a and 1b. HSG instability is visible at a
later time with the excitation source in Fat medium in the subgrid region.
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Figure 6.5: Cross-section of Scenario 2a setting, plane za = 40. Heart object in Air
environment. Heart occupies part of the main grid and the entire Inner Box. OS, IS
are placed in the Heart. Scenario 2a is symmetric relative to the centre line. Cross-
section at plane ya = 40 is the same as presented here.
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Heart. Electric field amplitude decays rapidly in this region due to high electric con-

ductivity of the Heart. In Figure 6.6a the HSG signal curve tends to follow the coarse

grid signal more than the fine grid. This is explained by the observation point lo-

cation already inside the Heart, but still in the main grid. Insufficient main grid

resolution combined with the high conductivity of Heart results in the HSG signal

following the coarse grid curve. At central point in the subgrid Figure 6.6b shows the

amplitude values in the order of 10−6. Electric field amplitude was reduced 100 times

in comparison to the observation point Rx a = 27. Higher spatio-temporal resolution

of the subgrid allows to reduce the discrepancy between the HSG and the fine grid

curves. No sign of instability is visible in HSG throughout the total simulation time

of tmax = 2000 time steps.

6.5.3 Frequency Domain Signal

Figures 6.7a and 6.7b show the signal propagation of Scenario 2a in frequency do-

main. Frequency domain plots were obtained with the Discrete Fourier Transform (DFT)

program,5 developed by Dr Arnaud Thiry. Entire range of the time domain data with

ta ∈ [1,2000] was used for the frequency domain data production.

Transferable frequency range used in the frequency domain plots analysis is the

range of frequencies, from minimum to maximum, easily transferred by the simu-

lation. The minimum transferable frequency bound is assumed to be 500 MHz. The

maximum value limiting the transferable frequency range is taken from the signal

plots at the cavity where the curve abruptly changes its inclination, e.g. 5 GHz in Fi-

gure 6.7a and 1.3 GHz in Figure 6.7b in case of HSG curve.

A large difference in the transferable frequency range exists between the HSG

and fine grid signals at points xa = 27,40 (Figures 6.7a and 6.7b). The main grid is

unable to transfer as much high frequency component as the fine grid reference. By

the time the HSG signal reaches the higher resolution subgrid there is little high fre-

quency component left to be transferred. Therefore, a notable difference between

the HSG and the fine grid curves is present.

5This program relies on the FFTW library [145].
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Figure 6.6: Time domain signal of Scenario 2a. Due to high conductivity of the Heart
the signal amplitudes are strongly reduced. HSG signal follows the coarse grid be-
cause the majority of high frequency components were lost during the propagation
in the Heart in the main grid.
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Figure 6.7: Frequency domain signal of Scenario 2a. Strong Debye medium crossing
OS–IS interface absorbs high frequency components of the HSG signal.
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6.6 Scenario 2b.

HSG in Homogeneous Weak Debye Medium

6.6.1 Scenario Setting

Purpose of Scenario 2b is to show the signal propagation modelled with HSG when

the OS–IS interface is covered by a weak Debye medium. Comparison of Scenario 2a

with Scenario 2b illustrates the effect of Debye medium strength onto the visibility

of HSG instability. Figure 6.8 depicts a 2D cross-section of Scenario 2b setting. Ex-

citation source is placed at Tx a = 15 and two observation points Rx a = 27,40 are

located at the centre line ya = za = 40. In comparison with Scenario 2a, it is antic-

ipated that the HSG curve will match the fine grid reference more closely, because

the Fat medium absorbs less high frequency components than the Heart.

15 29 32 48 51

*

PML

ax

y a

Vacuum

25 55401~11 70~80

oo

Fat

Figure 6.8: Cross-section of Scenario 2b setting, plane za = 40. Fat object in Air en-
vironment. Fat occupies part of the main grid and the entire Inner Box. OS, IS are
placed in the Fat. Scenario 2b is symmetric relative to the centre line. Cross-section
at plane ya = 40 is the same as presented here.
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6.6.2 Time Domain Signal

Figures 6.9a and 6.9b illustrate the signal propagation inside the Fat medium. Com-

pared to the same positions in the Heart medium (Figures 6.6a and 6.6b) the dis-

crepancy between the HSG and the fine grid reference curve is much smaller in

Scenario 2b. This is due to the lower electric conductivity of Fat, which can be

confirmed by observing the middle point xa = 40 inside of the subgrid. Strong De-

bye medium in the main grid of Scenario 2a absorbs the majority of high frequency

components. By the time the signal enters a high resolution subgrid there is little

frequency components to benefit from the high subgrid resolution. On the contrary

weak Debye medium in the main grid of Scenario 2b absorbs only a minor part of

high frequency components. Therefore, a large amount of high frequency reaches

the subgrid region and benefits from high spatio-temporal resolution. In a strong

Debye medium (Scenario 2a) the electric field amplitudes are 100 times smaller than

in a weak medium (Scenario 2b): 10−6 versus 10−4. Since the OS–IS interface is posi-

tioned in the frequency dependent Fat medium no sign of HSG instability is visible

throughout the entire simulation time of tmax = 2000.

6.6.3 Frequency Domain Signal

Similar observation holds in the frequency domain—inside of the Fat medium (Fig-

ures 6.10a and 6.10b) the HSG curve parts with the fine grid reference approximately

at the frequency of 3 GHz. On the contrary in the strong Debye medium of Sce-

nario 2a (Figures 6.7a and 6.7b) the curves part each other at approximately 1 GHz

or lower.

6.7 Scenario 3a. HSG in Inhomogeneous Debye Media

6.7.1 Scenario Setting

Purpose of Scenario 3a is to present a more sophisticated scenario setting, that con-

sists of two dispersive media: weak—Fat and strong—Heart. Figure 6.11 depicts a

2D cross-section of Scenario 3a setting. Excitation source is placed at Tx a = 15 and

two observation points Rx a = 27,40 are located at the centre line ya = za = 40.
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Figure 6.9: Time domain signal of Scenario 2b. Weak Debye medium crossing OS–
IS interface absorbs low amount of high frequency components. HSG signal in the
subgrid is an average of the coarse and fine grid signals.
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Figure 6.10: Frequency domain signal of Scenario 2b. Weak Debye medium crossing
OS–IS interface enables larger transferable frequency range of the HSG signal.
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Figure 6.11: Cross-section of Scenario 3a setting, plane za = 40. Fat and Heart ob-
jects in Air environment. Fat occupies part of the main grid and covers the OS–IS
interface. Heart takes up the entire Inner Box. Scenario 3a is symmetric relative to
the centre line. Cross-section at plane ya = 40 is the same as presented here.
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6.7.2 Time Domain Signal

Interesting dependency illustrating the HSG accuracy performance can be seen in

Scenario 3a plots. In the main grid the HSG curve tends to follow the coarse grid

signal (Figure 6.12a) while in the subgrid (Figure 6.12b) the HSG matches the fine

grid curve. The tendency to follow coarse grid is explained by the lack of spatio-

temporal resolution in the HSG main grid. On the other hand the ability to match

the fine grid signal in the subgrid shows the expected HSG accuracy. Purpose of any

subgridding algorithm is to provide an accuracy level similar to the fine grid signal.

Scenario 3a is one of the most important testing scenarios presented in this work,

because it vividly presents the expected HSG accuracy. Since Fat crosses the OS–IS

interface no HSG instability is visible during the simulation time of tmax = 2000.

6.7.3 Frequency Domain Signal

Figures 6.13a and 6.13b show the HSG results in the frequency domain. Figure 6.13b

illustrates a very good HSG accuracy performance in the centre of the subgrid at

xa = 40, where the HSG signal lies in a much closer proximity to the fine grid curve,

than to the coarse. Figure 6.13b highlights a major difference between the fine and

coarse grid results. This discrepancy is expected and is explained by the insufficient

signal sampling in the Heart in the coarse grid. On the contrary, fine discretisation

of the Heart tissue by the subgrid results in a good matching between the HSG and

the fine grid signals. Minor difference between the HSG and the fine grid curves at

the highest frequencies is attributed to the HSG signal propagation in the Fat tissue

inside the main grid. Figure 6.13b clearly illustrates the key strength of the HSG—

using a finely discretised grid in the HSG subgrid only yields a similar result to the

one achievable by the all fine grid approach.

6.8 Scenario 3b. HSG in Inhomogeneous Strong and

Weak Debye Media with Excitation in Subgrid

6.8.1 Scenario Setting

Setting of Scenario 3b is similar to Scenario 3a. There are two minor differences in

the layout: (i) excitation source is located in the middle of the subgrid at Tx a = 40

and (ii) weak and strong media changed places. A strong Heart medium surrounds
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Figure 6.12: Time domain signal of Scenario 3a. Strong Debye medium in the Inner
Box reduces the signal amplitudes. Coarse grid curve in the Inner Box is very smooth
due to insufficient resolution of the main grid.
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Figure 6.13: Frequency domain signal of Scenario 3a. Weak Debye medium at HSG
interface contributes to small discrepancy between the HSG and fine grid curves.
Strong Debye medium in Inner Box has little effect on the HSG signal because of the
high spatio-temporal resolution of the subgrid.
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a weak Fat medium. Figure 6.14 depicts a 2D cross-section of Scenario 3b setting.

Three observation points Rx a = 33,27,15 are located at the centre line ya = za = 40.

15 29 32 48 51

PML

ax401~11 70~8035 4525 55

Fat

y a

Vacuum Heart

o o *o

Figure 6.14: Cross-section of Scenario 3b setting, plane za = 40. Heart and Fat ob-
jects in Air environment. Heart occupies part of the main grid and covers the OS–IS
interface. Fat takes up the entire Inner Box. Excitation source is placed in the mid-
dle of the subgrid at xa = 40. Scenario 3b is symmetric relative to the centre line.
Cross-section at plane ya = 40 is the same as presented here.

6.8.2 Time Domain Signal

Figure 6.15a shows a perfect matching between the HSG and the fine grid curves.

This is due to the excitation source being placed into the high resolution subgrid

area. The difference between the HSG and the fine grid curves at locations xa = 27

and xa = 15 is directly proportional to the maximum signal amplitudes. At xa = 27

Figure 6.15b illustrates an amplitude difference of 2.5·10−4 V/m at the maximum

HSG signal of 10−3 V/m. While at xa = 15 Figure 6.15c highlights an amplitude dif-

ference of 1.8·10−4 V/m at the maximum HSG signal of 10−4 V/m. The discrepancy

between the HSG and the fine grid signals is caused by coarser spatio-temporal
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sampling of the main grid and higher electric conductivity of the Heart compared

to Fat.

6.8.3 Frequency Domain Signal

Figures 6.16a to 6.16c show the signal propagation of Scenario 3b in frequency do-

main. Figure 6.16a illustrates the HSG signal overlap with the fine grid curve inside

of the subgrid. Figure 6.16b depicts the signal as it enters the main grid. At obser-

vation location xa = 27 the HSG curve is approximately an average of the fine and

the coarse grid curves. Figure 6.16c presents the signals at the observation point in

the Air in the main grid at xa = 15. Near the simulation domain boundary the HSG

curve is located much closer to the coarse grid signal. This is explained with an es-

pecially strong high frequency component absorption in the main grid by the Heart

at xa ∈ [25, 32].

6.9 Scenario 3c. HSG in Inhomogeneous Weak and Strong

Debye Media with Excitation in Subgrid

6.9.1 Scenario Setting

Scenario 3c is analogous to Scenario 3b with the only difference in placement of

the Debye media. In Scenario 3c Fat (weak medium) surrounds the Heart (strong

medium). The excitation source is placed in the middle of the subgrid at Tx a = 40.

It is interesting to compare the HSG signal propagation between Scenario 3b and

Scenario 3c. Since the source is located in the middle of the high resolution region it

is expected that the HSG curve will match the fine grid very well near the excitation

source. After the subgrid the signal enters the main grid filled with Fat. Because Fat

medium has lower conductivity than Heart, it is anticipated to see a relatively small

difference between the HSG and the fine grid signals. Figure 6.17 depicts a 2D cross-

section of Scenario 3c setting. Three observation points Rx a = 33,27,15 are located

at the centre line ya = za = 40.

6.9.2 Time Domain Signal

Figure 6.18a illustrates an expected overlap of the HSG and the fine grid curves in-

side of the subgrid. The same as in Scenario 3b, presented in Figure 6.15a, matching
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Figure 6.15: Time domain signal of Scenario 3b. HSG signal quality deteriorates
gradually with distance from the source due to a strong Debye medium in the main
grid.
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Figure 6.16: Frequency domain signal of Scenario 3b. Strong Debye media at HSG
interface reduces transferable frequency range of the HSG signal.
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Figure 6.17: Cross-section of Scenario 3c setting, plane za = 40. Fat and Heart ob-
jects in Air environment. Fat occupies part of the main grid and covers the OS–IS
interface. Heart takes up the entire Inner Box. Excitation source is placed in the
middle of the subgrid at xa = 40. Scenario 3c is symmetric relative to the centre line.
Cross-section at plane ya = 40 is the same as presented here.
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between the HSG and the fine grid curves is very good. The only difference lies

in the maximum values of the electric field. Due to higher conductivity of Heart

in Scenario 3b the amplitude values are approximately 10 times smaller in Sce-

nario 3b than in Scenario 3c. Conversely in the main grid in Scenario 3c the HSG

preserves matching with the fine grid relatively well, compared to Scenario 3b. Fi-

gure 6.15b shows the peak amplitude difference of 2.5·10−4 V/m between the HSG

and the fine grid signals at Rx a = 27 in Scenario 3b. On the contrary no peak ampli-

tude difference is observed in Figure 6.18b showing the signal at the same location

in Scenario 3c. Similarly, Figure 6.15c highlights the peak amplitude difference of

1.8·10−4 V/m at Rx a = 15 in Scenario 3b, compared to no difference at the same

location in Scenario 3c presented in Figure 6.18c.

6.9.3 Frequency Domain Signal

A very good matching between the HSG and the fine grid signals presented in Fig-

ures 6.19a to 6.19c holds throughout all observation locations Rx a = 33, 27, 15 in

Scenario 3c. Conversely, as shown in Figures 6.16a to 6.16c, due to a strong Debye

medium in the main grid in Scenario 3b, the HSG signal moves further away from

the fine grid curve with increase of the distance from the excitation Tx a = 40.

6.10 Scenario 4. HSG in Multiple Inhomogeneous Weak

and Strong Debye Media

6.10.1 Scenario Setting

Scenario 4 presents a realistic setting with different Debye media: Fat, Bone and

Muscle. Scenario 4 verifies correct HSG behaviour when multiple weak and strong

Debye media cross the OS–IS interface. The Heart, a strong Debye medium, occu-

pies the entire Inner Box. Detailed scenario setting is given in Figure 6.20. Excitation

source is placed in the main grid at Tx a = 15 and two observation points Rx a = 27,40

are located on the centre line ya = za = 40. Signal in the HSG is tracked in various

media: Fat and Heart.
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Figure 6.18: Time domain signal of Scenario 3c. Strong Debye medium in Inner Box
and subgrid excitation enables good matching between HSG and fine grid signals.
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Figure 6.19: Frequency domain signal of Scenario 3c. Subgrid excitation source con-
tributes to a good matching between the HSG and fine grid signals.
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Figure 6.20: Cross-section of Scenario 4 setting, plane za = 40. Fat, Bone, Muscle
and Heart objects in Air environment. Fat, Bone and Muscle tissues occupy part of
the main grid and cover the OS–IS interface. Heart takes up the Inner Box.
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6.10.2 Time Domain Signal

Figure 6.21a illustrates the tendency of the HSG signal in the main grid to follow

the coarse grid curve in the Fat environment. This is explained by the insufficient

resolution of the wavelength in Fat in the main grid and higher conductivity of Fat

tissue relative to Air. Inside of the subgrid Figure 6.21b shows a very good matching

of the HSG with the fine grid curve. Strong conductivity of Heart reduces the electric

field amplitude. Heart absorbs the high frequency components of the signal in the

coarse grid. Hence, the coarse grid curve is smooth and small in amplitude. Multiple

minor peaks in Figure 6.21b possibly account for signal reflections from the strong

Debye media—the Bone and Muscle tissues.

6.10.3 Frequency Domain Signal

Figures 6.22a and 6.22b show the signal propagation in frequency domain. Multiple

peaks in Figure 6.22a occur due to the presence of different media influencing the

signal. Notable is Figure 6.22b depicting the signal in the middle of the subgrid,

where the HSG matches with the fine grid relatively well. Transferable frequency

range in the coarse grid is dramatically smaller.

6.11 Cut-Off Frequency Estimation

Estimation of the wave propagation cut-off frequency fc is beneficial to verify the

HSG accuracy. In Air the cut-off frequency is expressed as [102]:

fc =
1

π∆t
arcsin

(
ν∆t

∆s

)
. (6.6)

Parameter ν in (6.6) denotes the speed of wave propagation in a given medium

and is expressed as:

ν= 1p
εµ

= 1p
ε0εrµ0µr

= cp
εrµr

. (6.7)

The final form of the cut-off frequency equation is obtained by substituting (6.7)

into (6.6):

fc =
1

π∆t
arcsin

(
c∆t

∆s
p
εrµr

)
. (6.8)
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Figure 6.21: Time domain signal of Scenario 4. Strong Debye medium in the Inner
Box reduces the signal amplitudes. High resolution of the subgrid enables good
matching between the HSG and the fine grid curves.
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Figure 6.22: Frequency domain signal of Scenario 4. High resolution subgrid of the
HSG allows it to reach an almost identical performance as the fine grid signal.
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Since magnetic properties of a medium are not important in the context of this

work, the relative magnetic permeability µr in (6.8) is assumed to be 1. Further-

more, to incorporate the Debye medium parameters into (6.8) the relative electric

permittivity εr is derived as:

εr = ε∞+ εs −ε∞
1+ ωτ

+ σ

ωε0
, (6.9)

where ω = 2π fw . Table 6.3 shows the cut-off frequency ranges in GHz for the all

coarse and all fine grid signals. The cut-off frequency ranges are calculated for De-

bye media parameters of the four tissues used in Scenarios 1a to 4: Heart, Muscle,

Bone and Fat. Only the real part of complex relative permittivity in (6.9) was taken

into account while calculating the cut-off frequency ranges. Spatial and temporal

increments of Scenarios 1a to 4∆sa = 10 mm,∆ta = 0.179 ps and∆sb = 2 mm,∆tb =
3.582 ps were used in the cut-off frequency estimation. The cut-off frequency ranges

listed in Table 6.3 are estimated for the range of wave frequency, where Debye pa-

rameters are valid: fw ∈ [0.1, 6] GHz. Since there is only a minor change to the cut-

off frequency depending on the relative permittivity, the data Table 6.3 is shown in

ranges. Also the presentation of value ranges in Table 6.3 offers a better overview of

the cut-off frequency dependence on the relative permittivity. Only the real part of

relative permittivity is listed in Table 6.3.

Tissue εr fc [GHz], Coarse fc [GHz], Fine

Heart 63.540 ∼ 47.964 1.198 ∼ 1.379 5.990 ∼ 6.896
Muscle 56.927 ∼ 47.291 1.266 ∼ 1.389 6.329 ∼ 6.945
Bone 14.166 ∼ 9.915 2.544 ∼ 3.046 12.720 ∼ 15.228
Fat 5.530 ∼ 4.849 4.094 ∼ 4.378 20.470 ∼ 21.888
Air 1.000 10.073 50.367

Table 6.3: Cut-off frequency ranges for human body tissues and air calculated for
wave frequency fw ∈ [0.1, 6] GHz

Table 6.3 shows that the relative permittivity εr of all tissues is inversely propor-

tional to the wave frequency fw . The dependency between the relative permittivity

and the cut-off frequency is also inversely proportional (higher relative permittiv-

ity results in a lower cut-off frequency value). Strong Debye media such as Heart

and Muscle have lower cut-off frequency thresholds, than weak Debye media such

as Bone and Fat. Another interesting observation, that holds for all media, is that a
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relatively wide wave frequency range (6.0 GHz−0.1 GHz = 5.9 GHz) results in a rela-

tively narrow cut-off frequency range, e.g. in case of Bone (3.046 GHz−2.544 GHz =
0.502 GHz) for coarse grid and (15.228 GHz−12.720 GHz = 2.508 GHz) for fine grid.

It is possible to explain the HSG signal behaviour in the testing scenarios with

a change in cut-off frequency. Refer to Scenario 3b and consider the frequency

domain signal at the observation point Rx a = 33 presented in Figure 6.16a. Point

Rx a = 33 is located inside the subgrid in the Heart medium. According to Table 6.3

the maximum cut-off frequency of the Heart in the subgrid is fc = 6.896 GHz. Since

the observation point is in the subgrid, the HSG signal matches the fine grid very

well. Consider the next observation point Rx a = 27 in Figure 6.16b, that is located

in the main grid, still inside the Heart. The maximum cut-off frequency there is

fc = 1.379 GHz. A sudden drop of cut-off frequency at the OS–IS interface by five

times results in a rapid move of the HSG curve towards the coarse grid curve.

A contrasting example is presented by Figures 6.19a and 6.19b illustrating the

frequency domain signal plots of Scenario 3c. Although the maximum cut-off fre-

quency between Fat in the subgrid and Fat in the main grid differs by the subgrid-

ding ratio of 5, the main grid cut-off frequency of 4.378 GHz still provides a sufficient

frequency span for the HSG signal to propagate accurately.6 A minor change in the

HSG signal is noticeable between the Figures 6.19a and 6.19b because the Heart in

the subgrid cut off the frequencies beyond 6.896 GHz. Only the frequencies in bet-

ween 6.896 GHz and 4.378 GHz were lost.

6.12 Scenario 5. HSG Stability in Homogeneous Weak

Debye Medium

This section presents and analyses the effect of electric conductivityσ on the overall

HSG instability.

Usually instability of the frequency-independent HSG method in 3D becomes

visible after approximately 4000–5000 main grid iterations with r = 5 and the sub-

grid size of 80× 80× 160 [102] (see Section 4.6.1 for more details). Observing the

results from Scenarios 1a to 4 leads to a hypothesis that dispersive medium delays

6In this case the notions of “sufficient frequency span” and “accurate propagation” are taken in

relation to the signal plots. Since there is little change in HSG signal quality in Figures 6.19a and 6.19b

compared with the fine grid signal, it is assumed the frequency span is sufficient and the propagation

is accurate.
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the visibility of the HSG instability. The aim of Scenario 5 is to verify the drawn hy-

pothesis and test the effect of electric conductivity σ on the visibility of the HSG

instability.

6.12.1 Scenario Setting

Figure 6.23 presents a detailed setting for Scenario 5. Excitation source was located

at Tx a = 5 and the observation point was placed at Rx a = 13. Domain sizes of 463

for the main and 633 for the subgrid were used in Scenario 5. Given domain sizes

include the 10 and 6 points thick PML in the main and in the subgrid. The HSG

method was executed for 106 main grid iterations. Electric field component Ez was

output at every 10th main grid iteration.

*

PML

ax

y a

Vacuum

19

14 1712

−9~1 7 13 26~36

Fat

95

o

Figure 6.23: Cross-section of Scenario 5 setting, plane za = 13. Air environment
with Fat object covering the OS–IS interface. Scenario 5 is symmetric relative to the
centre line. Cross-section at plane ya = 13 is the same as presented here.

Subgridding ratio and the CFL number were r = 5, NC F L = 0.93. The spatial and

temporal steps were set to ∆sa = 0.9 mm,∆sb = 0.18 mm and ∆ta = 1.612 ps,∆tb =
0.322 ps. Fat with Debye parameters of σ = 3.71·10−2 S/m, εs = 5.531, ε∞ = 3.998
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and τ= 0.236 ps was taken for a basis tissue. Multiple tests were run with the setting

of Scenario 5 and electric conductivity modified according to (6.10):

σ= 0 and σ= 3.71·10n, (6.10)

where n ∈ [−2, 0, 2]. Given settings constitute four test cases with constant values of

εs , ε∞,τ and variable σ. Only the case with σ= 3.71·10−2 S/m corresponds to a test

with the realistic Fat medium. Other cases translate into three tests with artificial

media.

6.12.2 Time Domain Signal

Figure 6.24 depicts a summary of all Scenario 5 tests with various values of electric

conductivity. Table 6.4 lists the absolute maximum values of electric field Ez used in

the amplitude normalisation of Figure 6.24.
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Figure 6.24: Time domain signal of Scenario 5 at the observation location xa = 13 in
the middle of the subgrid. Conductivity values of σ = 0, 3.71·10−2, 3.71, 3.71·102

are shown on the plot. In case of σ = 0 the signal diverges after approximately
170000 main grid iterations.

Results presented in Figure 6.24 support the drawn hypothesis. No instability

growth is observed in any case with the non-zero conductivity. Most likely minor

amplitude fluctuations in these cases are attributed to the numerical noise. In the
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σ [S/m]
∣∣Ez,max

∣∣ [V/m]

0 5.32565685·10−3

3.71·10−2 4.85745305·10−3

3.71 6.46746310·10−4

3.71·102 4.93262291·10−7

Table 6.4: Absolute maximum values of Ez used for normalisation, Scenario 5

frequency-independent case withσ= 0 the HSG signal diverges after approximately

170000 main grid iterations.

6.13 Scenario of Human Torso

6.13.1 Simulation Settings

A realistic test case with signal propagation inside a human torso follows the basic

scenarios with artificial media placement. Wave propagation is simulated with the

dispersive HSG method and a subgridding ratio r = 5. Entire human heart is placed

into the subgrid region. Scenario of human torso was run using two kinds of exci-

tations: (i) point source excitation and (ii) defibrillator pads excitations. Gaussian

pulse formed according to (6.1) was applied at each point of the excitation. Ma-

jor simulation parameters are listed in Table 6.5. Parameter notation is the same as

in Section 6.1. Negative coordinate indices in the domain ranges ni , n j were used

to allow 10∆sa buffering zones of Air before and after the human torso in x-axis

and 4 cells thick PML in x, y-axes. Negative coordinates were required because the

human torso PGM data ranges started from 1.

Figure 6.25 presents the human torso simulation environment in 2D and 3D.

Detailed simulation scenario setting used to verify the wave propagation through

the human body is given in 1D in Figure 6.26.

Figure 6.26 shows an observation point Rx positioned in the middle of the sub-

grid, inside the Heart tissue, at (xa , ya , za) = (36, 42, 244). The line (ya , za) = (42, 244)

crosses the human torso and the human heart. Figure 6.26a presents an overall hu-

man torso environment setting in 1D. The entire simulation domain is shown in Fi-

gure 6.26a. Figures 6.26b and 6.26c provide a magnified view of Figure 6.26a and

concentrate only on the human body tissues in between the defibrillator pads. Fi-

gure 6.26c gives the most precise representation of the radio environment.
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Parameter HSG Fine

ni −13 ∼ 67 −53 ∼ 319
n j −3 ∼ 102 −3 ∼ 494
nk 160 ∼ 341 820 ∼ 1691
tmax 1000 5000
r 5
OL 22, 27, 232
I L 25, 30, 235
I R 47, 54, 254
OR 50, 57, 257
zoneb 15
npmla 4
npmlb 6
source type soft soft
∆sa 5 mm −
∆sb 1 mm 1 mm
∆ta 8.955 ps −
∆tb 1.791 ps 1.791 ps
NC F L 0.93 0.93
χa 10 −
χb 50 50

Table 6.5: Simulation settings, human torso
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(a) (b)

Figure 6.25: Human torso propagation environment.

(a) Human torso in main grid (large squares) with heart in subgrid (small squares).
Outer Surface (blue) and Inner Surface (red) bound the subgrid region.

(b) Human torso with heart (red) and two defibrillator pads (green, purple) placed
anteroposteriorly.
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(a) Human torso with defibrillator pads placed anteroposteriorly. Scenario of human torso, setting
in 1D, xa . Observation point Rx is in the middle of the Heart. Four and six points thick PML terminate
the main and subgrids respectively. Rectangular pads, where present, coincide with locations of the
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(b) Human body tissues between defibrillator pads on the line crossing the Heart at xa ∈ (5,51), ya =
42, za = 244. Following abbreviations are used: S—Skin, F—Fat, M—Muscle, L—Lung, H—Heart and
B—Bone. Numbers specify tissue thickness in main grid points.
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(c) Human body tissues between defibrillator pads on the line crossing the Heart at xb ∈ (26,251), yb =
211, zb = 1223. Following abbreviations are used: S—Skin, F—Fat, M—Muscle, L—Lung, H—Heart
and B—Bone. Numbers specify tissue thickness in subgrid points.

Figure 6.26: Scenario of human torso, setting
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Figure 6.26b shows the Scenario of human torso as it is viewed by the main grid.

In the simulation the media in the main grid is set by choosing the fine grid coor-

dinate values that are multiples of the subgridding ratio r = 5. Although, the Skin

thickness in the fine grid is less than 5 points, there is Skin tissue in the main grid,

i.e. Skin thickness in the main grid is 1, as shown in Figure 6.26b. The Skin range on

the rear of the torso is xb ∈ [27, 30], therefore xa = 30/r = 6 is set in the main grid.

6.13.2 Defibrillator Pads Modelling

Two types of excitation sources were used for the verification tests: (i) single point

source and (ii) two defibrillator pad sources. Anterior (front) and posterior (rear) de-

fibrillator pads consist of 70 excitation point sources each. These sources are placed

on top of the human body skin. There is no distance between the Skin and the pad.

The pad coordinate locations, where present, coincide with locations of the Skin.

Since defibrillator pads are positioned in the main grid, they are only approxima-

tions of the original pads, each occupying 75×100 fine grid points.

The expected amount of main grid points N to model a defibrillator pad is ex-

pressed by the following formula:

N = (
( jmax − jmi n)%r +1

)
·
(
(kmax −kmi n)%r +1

)
, (6.11)

where symbols jmi n , jmax and kmi n ,kmax denote the minimum and maximum va-

lues of y and z defibrillator pad coordinate ranges in the fine grid. Operator % signi-

fies the integer division and r stands for the subgridding ratio. According to (6.11)

the expected amount of main grid points to model a 75× 100 fine grid points de-

fibrillator pad is 300. The number 70 used in the simulation was obtained in the

following manner:

(a) Skin surface under the 75 × 100 defibrillator pad location was extracted from

the RIKEN digital human phantom using the utility program xsurf. The skin

surface projection on y-axis for both anterior and posterior pads occupied the

coordinate ranges of yb ∈ [174, 248] and zb ∈ [1173, 1272].

(b) Every main grid point coinciding with the fine grid point in the pad location data

was taken out with an awk script downsample-src. Because of the particular

pad location and the natural human body curvature there were less coinciding

points than expected. Anterior pad resulted in 84 and posterior in 72 main grid
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point approximations compared to 300 obtained with (6.11) by substitution of

anterior and posterior pads coordinate ranges.

(c) Finally, the points in dense regions of anterior and posterior pads were removed

manually. The x, y, z main grid locations data was sorted in a descending order

along the z coordinated value. The z coordinate value span for an anterior pad

was z ∈ [235, 254]. Then the total number of points for each z value were identi-

fied, e.g. 8 points for z = 235, 7 points for z = 245 and so on. A dense region was

defined as the set of location points for a particular z coordinate value, where

the total number of points was larger or equal to r = 5. The excessive points

in dense regions were removed by hand to keep the total points number for a

particular z coordinate equal or less than 5. Points were removed in a non-suc-

cessive order to achieve a uniform points distribution. Consider the first lines

of the excitation source file anterior_a shown in Listing 6.1. The file columns

correspond to x, y, z coordinate values. Each row of the file represents an exci-

tation source point in the main grid. Lines 2, 4 and 6 were removed manually to

achieve a uniform point distribution.

1 51 38 235
2 51 39 235
3 51 40 235
4 51 41 235
5 51 42 235
6 51 43 235
7 51 44 235
8 51 45 235

Listing 6.1: Excitation sources file “anterior_a”

This manual averaging operation allowed to obtain two defibrillator pads mod-

elled with 70 main grid excitation points.

Both pads excite anti-phase. Posterior (rear) pad injects the current density Jz ,

the same in magnitude, but different in sign as the anterior (front) pad.

6.13.3 Correct Modelling of Skin

The HSG main grid is incapable of representing the Skin thickness of 1, 2, 3 and

4 fine grid cells. This can be observed by comparing scenario setting in the main

grid (Figure 6.26b) and the subgrid (Figure 6.26c). Also the approximation of 1, 2,
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3 and 4 fine grid thickness with a single main grid cell would lead to a very strong

Skin conductivity. Therefore, the electric conductivity of Skin σ was divided by the

subgridding ratio of 5 in both the HSG main grid and the coarse grid FDTD meth-

ods. Conductivity σ was decreased by the subgridding ratio regardless of the Skin

thickness 1 ∼ 4 in the fine grid.

Reducing the electric conductivity by the subgridding ratio is not ideal, but a rea-

sonable approach. The high value of Skin conductivity left unchanged would absorb

most of the excitation signal and result in erroneous signal amplitudes at observa-

tion locations. Precise estimation of conductivity values is possible with the Thin

Slab method [146], but it was not implemented in this work due to time constraints.

6.13.4 Point Source Excitation

The first batch of verification results was produced with a single point source lo-

cated 10 coarse grid points away from the skin at the back of the torso. This prelimi-

nary test was conducted in preparation for the defibrillation pads excitation.

Figure 6.27a shows the signal propagation in time domain. The observation

point is placed in the centre of the Heart discretised with a subgrid at Rx a = 36. Due

to high conductivity values of Skin and Muscle tissues in the main grid the signal

amplitude is reduced by 10−6.

Figure 6.27b illustrates the signal propagation in frequency domain. In the mid-

dle of the subgrid the HSG curve is in between the coarse and fine grid signals.

6.13.5 Defibrillator Pads Excitation

Figure 6.28a presents the HSG signal propagation in time domain at the observation

location Rx a = 36. Compared to the single point source (Figure 6.27a) the signal

amplitude reduction in case of defibrillator pads excitation is 1000 times lower. This

is due to the stronger initial signal, where 70 points excite in one pad compared to

one point in the point source excitation scenario. Also defibrillator pad is placed on

top of the Skin layer, whereas in the single point source excitation scenario it lies

10 points away from the Skin.

Figure 6.28b depicts the HSG signal in frequency domain. The HSG curve lies

in parallel with the fine grid curve. The difference between two signal curves is mi-

nor. Compared to the single point excitation (Figure 6.27b) the HSG–fine grid curve

matching is better. Figure 6.28b shows the precision advantage of the HSG over the
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Figure 6.27: Scenario of human torso. Point source excitation. Highly conductive
Skin and Muscle tissues reduce the signal amplitudes.
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main grid more clearly than Figure 6.27b. In case of the single point excitation the

majority of the signal is absorbed and the visible remainder is probably mixed with

a strong portion of numerical noise. Compare Figure 6.27b with Figure 6.28b. The

frequency spectrum range for the single point source lies within 10−18 ∼ 10−15 and

with the defibrillator pad sources it is 10−16 ∼ 10−12.
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Figure 6.28: Scenario of human torso. Defibrillator pads excitation. Strong initial
signal from the pad allows to preserve high signal amplitudes.
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6.14 HSG Computational Requirements

A special scenario was developed to test the HSG method’s computational require-

ments. HSG with the main grid size of 803 and variable subgrid sizes of 753, 1003,

1253, 1503, 1753 and 2003 were run for 100 main grid time steps. Each subgrid

edge is comprised of 2 PML, 2 buffering zones, 2 OS–IS separations and 1 effec-

tive subgrid size (the volume bound by IS), e.g. the subgrid edge of 75 is obtained

as (2× 5)+ (2× 5)+ (2× 15)+ 25. PML thickness of 5 was used for both main and

subgrids. Buffering zone of 5 subgrid points separated the PML from the OS–IS

interface. OS–IS interface thickness equalled to 15 subgrid points. The effective

subgrid size changed from 25 to 150 with a stepping of 25 subgrid points. Subgrid-

ding ratio remained constant at r = 5. Spatial and temporal increments were set to

∆sa = 10 mm,∆sb = 2 mm and ∆ta = 0.179 ps,∆tb = 3.582 ps with the CFL number

of NC F L = 0.93.

The HSG computational requirements tests were executed on a high specifica-

tion system with 32 processing units (8 CPU with 4 cores each) and 96 GB of me-

mory. Further details of the testing system are given in Table 6.6.

Parameter Value

Operating System Scientific Linux SL 5.5 (Boron)
Kernel 2.6.18-194.26.1el5
CPU Specification Intel Xeon E5620 @ 2.4 GHz
Cache 12 MB
Cores 4
Address sizes 40 bits physical

48 bits virtual
CPU Total 8
Memory Total 96 GB

Table 6.6: Testing system specification

Table 6.7 presents the CPU time and memory requirements of the HSG method.

Efficiency data for the coarse grid only and the fine grid only FDTD cases is given for

comparison purposes. First column entitled “Case” contains the test case descrip-

tion, where the word “Coarse”, “Fine” or “HSG” specifies the simulation method and

the number defines the domain edge size, e.g. “Coarse, 80” refers to the all coarse

grid test case with an edge size of 80 coarse grid points and “HSG, 75” refers to the

HSG test case with a subgrid edge size of 75. Memory usage data in MB and percent
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(%) is given in columns two and three, where percent data shows the memory usage

in percent relative to the all fine grid reference “Fine, 400”. Percent data is calculated

according to (6.12):

M% = MHSG

MF i ne
·100%, (6.12)

where MHSG and MF i ne stand for the HSG and all fine grid memory use in MB, and

the HSG case includes both the main and the subgrid of the HSG. The memory use

data was obtained with the UNIX command line utility top as the resident size non-

swapped physical memory a task has used, listed under column RES in the top pro-

gram interface.

Case Memory CPU Time Subgrid Size

MB % min:s s % points %

Coarse, 80 128 2.08 0:14 14 0.16 0 0.00
HSG, 75 142 2.31 1:48 108 1.25 753 18.75
HSG, 100 213 3.46 5:32 332 3.83 1003 25.00
HSG, 125 322 5.23 15:11 911 10.51 1253 31.25
HSG, 150 476 7.73 28:33 1713 19.77 1503 37.50
HSG, 175 683 11.09 47:29 2849 32.88 1753 43.75
HSG, 200 952 15.46 80:06 4806 55.46 2003 50.00
Fine, 400 6159 100.00 144:26 8666 100.00 4003 100.00

Table 6.7: CPU time and memory requirements of HSG

The next three columns in Table 6.7 present the total execution time used by

the test case. The time is shown in minutes and seconds, seconds only, and per-

cent. Time in percent is given relative to the all fine grid case and is calculated us-

ing (6.13):

T% = THSG

TF i ne
·100%, (6.13)

where THSG and TF i ne denote the HSG and all fine grid execution time is seconds.

Execution time data was measured with the UNIX command line utility time. The

time data presented in Table 6.7 is a sum of the user and system time as given by

the time utility. Here user time is the CPU time the process has spent in user mode

(outside of the kernel) and the system time is the CPU time the process has spent

in the kernel mode. Each CPU time measurement includes the time elapsed for the

entire simulation, i.e. the input parameter reading, simulation initialisation, setting

of radio environment, material coefficients calculation, Gaussian pulse generation,
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FDTD field updates in the main and the subgrid for the duration of the simulation

and the simulation finalisation.

Last two columns to the right in Table 6.7 show the HSG subgrid size in fine grid

points and in percent relative to the all fine grid case “Fine, 400”. Subgrid size in

percent is calculated according to (6.14):

S% = SHSG

SF i ne
·100%, (6.14)

where SHSG and SF i ne signify the subgrid size in the HSG and total domain size in

the all fine grid case.

According to Table 6.7 the HSG relative memory and time consumption grow

with the increase of the subgrid size. However, the increase in memory use is subtle

in comparison with the time increase, e.g. for the case “HSG, 125” time consump-

tion of 10.51% is double the memory consumption of 5.23%. Another important

remark is that the computation time depends on the subgridding ratio. The time

will increase even faster for higher ratios. This is due to growth of the subgrid time

loop iterations relative to one main grid iteration. Intuition supported by the com-

putational requirements data in Table 6.7 suggests that the HSG method is most

efficient when the subgrid occupies only a small fraction of the entire computa-

tion domain and the subgridding ratio is kept relatively low.7 For 3D applications

Bérenger [102] recommends using the ratios in the order of 30. Accurate results

with the ratios of r = 5, 11, 15 were published in [100, 102]. Unfortunately, the CPU

time and memory requirements of the HSG implementation with these ratios have

not been reported. More experiments with various subgridding ratios are required

to identify (i) whether the dependency of the CPU time on the subgridding ratio

is linear or exponential and (ii) the subgridding ratio influences the HSG time and

memory efficiency.

Figure 6.29 illustrates the HSG memory consumption depending on the subgrid

size. Abscissa shows the subgrid size relative to the main grid size and ordinate—

the HSG memory usage relative to the all fine grid memory usage. For example,

in case of HSG, 75 the x-axis value is calculated as (75/5/80)3, where 75 is the sub-

grid size in subgrid points SHSG , 5 is the subgridding ratio r and 80 is the main grid

size in main grid points. The y-axis value is calculated as 142/6159, where 142 is

7Subgridding ratio in 3D should be relatively low with respect to the ratios of 2D and 1D cases. In

2D the HSG method was successfully applied with r = 11,33,99 [98, 101] and in 1D with r = 99 [99].
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the memory use of the HSG MHSG (main and subgrid together) in MB, and 6159 is

the memory consumption of the all fine grid MF i ne in MB. Crosses in Figure 6.29

highlight the data values obtained experimentally, while the continuous lines rep-

resent the fitted curves. Curves were fitted by means of the fit command of the

gnuplot interactive plotting utility. The fit command implements the Non-Linear

Least-Squares (NLLS) Levenberg–Marquardt algorithm [147, pp. 58–64]. Three fit-

ting functions were used to fit the memory requirements data: exponential, linear

and power. The functions with their final coefficient values are given in Table 6.8.

Exponential Linear Power

Ω1(l ) = a · exp(b · l ) Ω2(l ) = d · l +e Ω3(l ) = g · l h

a = 0.0353759 d = 1.10634 g = 0.704369
b = 12.1382 e = 0.0175081 h = 0.737731

Table 6.8: Fitting functions and final coefficient values for HSG memory require-
ments data fitting

The exponential fitting function Ω1(l ) with the initial coefficient values of a0 =
0.1, b0 = 0.2 converged after 7 iterations, the linear fitting function Ω2(l ) with the

initial coefficient values of d0 = 0.1, e0 = 0.2 converged after 5 iterations and the

power fitting function Ω3(l ) with the initial coefficient values of g0 = 0.1, h0 = 0.2

converged after 7 iterations.

Three fitting functions were applied to the memory consumption data to pro-

vide the best possible curve fit. The fitting functions are denoted as exp(), lin()

and pow() in Figure 6.29. Due to relatively small amount of experimental data it is

hard to identify the memory consumption dependency over the grid size. Accord-

ing to the gnuplot utility the linear function had the smallest standard deviation of

the fit Sdev = 1.43465·10−3 compared with 3.84815·10−3 for the power function and

1.24786·10−2 for the exponential function. The standard deviation of the fit is the

Root Mean Square (RMS) of residuals and is calculated as:

Sdev =
√

W SSR

nd f
, (6.15)

where W SSR is the Weighted Sum-of-Squares Residual and nd f is the number of

degrees of freedom. Parameter nd f is the number of data points minus the number

of fitted parameters [147, p. 61].

Careful analysis of the lower part of Figure 6.29 shows that the dependency is
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linear, but it is unlikely that the dependency will stay linear for larger relative subgrid

sizes. Therefore, it was decided to choose the most restrictive exponential function

for the relative HSG memory requirements estimation. Using the subgridding ratio

of 5 the HSG memory consumption will reach the all fine grid when the HSG subgrid

size is approximately 0.27 of the main grid. It is beneficial to apply the HSG with the

subgridding ratio of 5 when the subgrid region occupies less than 27% of the main

grid.
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Figure 6.29: HSG memory consumption relative to all fine grid case

Figure 6.30 presents the HSG execution time depending on the subgrid size. Ab-

scissa shows the HSG subgrid size relative to the main grid size and ordinate—the

HSG CPU time usage relative to the all fine grid CPU time usage. For example, in

case of HSG, 75 the x-axis value is calculated as (75/5/80)3, where 75 is the subgrid

size given in subgrid points SHSG , 5 is the subgridding ratio r and 80 is the main grid

size in main grid points. The y-axis value is derived as 108/8666, where 108 is the

CPU time usage of HSG in seconds THSG and 8666 is the CPU time consumption of

the all fine grid in seconds TF i ne . Crosses in Figure 6.30 illustrate the data values

obtained experimentally and the continuous lines represent the fitted curves.

Curve fitting was conducted by means of the fit command of the gnuplot uti-

lity [147, pp. 58–64] using similar fitting functions as in the memory requirements
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test case. The exponential, linear and power data fitting functions are listed in Ta-

ble 6.9. Exponential function in Table 6.9 differs from the exponential function

in Table 6.8, since the function al +b provided a better fit for the CPU time require-

ments than the function a · exp(b · l ).

Exponential Linear Power

Ω1(l ) = al +b Ω2(l ) = c · l +d Ω3(l ) = e · l g

a = 36.1352 c = 4.55588 e = 6.99934
b =−1.01414 d =−0.0324328 g = 1.22191

Table 6.9: Fitting functions and final coefficient values for HSG CPU time require-
ments data fitting

The exponential fitting function Ω1(l ) with the initial coefficients a0 = 0.1, b0 =
0.2 converged after 9 iterations, the linear fitting function Ω2(l ) with the initial co-

efficients c0 = 0.1, d0 = 0.2 converged after 5 iterations and the power fitting func-

tionΩ3(l ) with the initial coefficients e0 = 0.1, g0 = 0.2 converged after 17 iterations.

Three fitting functions produced similar results. The exponential function had the

smallest standard deviation of the fit Sdev = 5.57501·10−3. The second-best fit was

obtained with the power function Sdev = 7.14865·10−3. Linear function resulted in

the worst fit with Sdev = 1.61753·10−2.

Careful analysis of the experimental data in Figure 6.30 shows that the expo-

nential and power functions provide better curve fits. Selecting the most restrictive

exponential function, the HSG CPU time use will reach the all fine grid time con-

sumption when the subgrid size occupies approximately 20% of the main grid.

The HSG time requirements are higher than the memory requirements. The

time requirements exponential curve exhibits a steeper growth, which is explained

by the HSG algorithm. To synchronise the EM-field calculation in both grids the

HSG has to execute r subgrid iterations for each main grid step. Field update in the

subgrid requires more computational effort for a larger subgrid. Figure 6.30 shows

that it is beneficial to use the HSG method with a subgridding ratio of 5 up to the

subgrid sizes occupying less than 20% of the main grid.

For the subgrid sizes covering below 7.5% of the main grid the HSG computation

time will constitute approximately 1/5 of the all fine grid time, i.e. the time require-

ments will be proportional to the subgridding ratio r = 5. The HSG time usage for

the subgrid sizes over 7.5% of the main grid exhibits a steep exponential growth. It is

still beneficial to use HSG for large subgrid sizes ranging from 7.5–20% of the main
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grid size, but the benefit will constitute a fraction of rather than the full subgridding

ratio.
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Figure 6.30: HSG time consumption relative to all fine grid case

6.15 Conclusion

Numerical results presented in this chapter verify the expected HSG performance:

due to high spatio-temporal resolution in the subgrid and low in the main grid the

HSG outperforms the coarse grid case in accuracy and the fine grid case in compu-

tation speed. The HSG method increases transferable frequency range compared

with the all coarse grid case. Dispersive materials covering the OS–IS interface con-

tribute to a delay in the visibility of HSG instability. No instability was visible in

any of the test cases where Debye medium crossed the subgridding interface. Rea-

listic test case with the human torso shows a possible HSG application area as an

efficient tool for defibrillation parameter optimisation. HSG efficiency tests show

that memory usage exhibits linear and the CPU time usage exponential growth re-

lative to the increase of the subgrid size. However, more practical experiments are

required to verify the linear or exponential memory use dependency of the HSG.

The HSG memory and time efficiency tests identified the computation time to be
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a more critical performance factor than the memory usage. The HSG method with

r = 5 outperforms the all fine grid case in terms of CPU time for the subgrid sizes

constituting less than 20% of the main grid.



Chapter 7

Conclusion

This chapter highlights the major and minor contributions of the research project

described in this dissertation.

Subgridding approaches decompose the simulation domain into a number of

subdomains with the coarse and fine spatio-temporal resolutions. The compu-

tational efficiency of the FDTD method is increased, because the CFL criterion is

maintained independently in each grid. This work adopted a very promising sub-

gridding technique called the Huygens Subgridding (HSG).

The main contribution of this research project is the extension of the frequency-

dependent HSG method from one dimension (1D) to three dimensions (3D). The

new algorithm, in short termed the dispersive HSG, enables an efficient simulation

of electromagnetic wave propagation inside the frequency-dependent materials.

The frequency dependency was implemented via the Auxiliary Differential Equa-

tion (ADE) approach using the one pole Debye relaxation model. The dispersive

HSG program was written using an existing Fortran code containing the classical

HSG method.

Minor contributions of this work included: (i) the implementation of the radio

environment setting functionality using the PGM-files, (ii) the development of an

application test case, simulating the wave propagation from the defibrillator pads

through the human torso and (iii) the analysis of computational requirements of

the dispersive HSG code with the subgridding ratio of 5. Numerical experiments

show that the dispersive HSG program with the subgridding ratio of 5 outperforms

the all fine grid FDTD program, when the subgrid size occupies less than 20% of the

main grid.

The future research directions that can be pursued on the basis of this project

205
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are described in Chapter 8.



Chapter 8

Future Work

This chapter discusses the potential directions for future work that can be under-

taken on the dispersive HSG method.

The frequency dispersive HSG project offers a solid base for investigation of the

following research questions. The problems for future work are grouped into three

categories addressing the HSG method’s stability, realistic simulation of defibrilla-

tion current and efficiency.

8.1 Stability

The instability remains the major hurdle limiting the general acceptance of the HSG

method for a broad range of numerical simulations. Future research ideas pre-

sented below can help to reduce or eliminate the native HSG instability:

Decoupling of spatial and temporal interfaces in the HSG approach to decrease

and potentially eliminate the late-time instability. As suggested by [41, 78, 79,

89, 90] separation of the spatial and temporal interfaces with a subsequent

nesting of temporal interface inside of the spatial solves the problem of insta-

bility.

Use of an artificial constant loss with a dispersive gain [105, 106] also can have a

positive effect on the HSG stability.

The effect of relative permittivity εr on general stability of the HSG method. Al-

though, tested in Section 6.12 the hypothesis of εr suppressing the late-time

instability requires an in depth testing approach.

207
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Application of an implicit FDTD scheme in the subgrid region can possibly remove

the HSG instability.

8.2 Defibrillation

Application of the dispersive HSG method to calculate the defibrillation current

density and current flow distribution in the human heart. The human torso

simulation scenario should be taken further to investigate the defibrillation

current behaviour for different defibrillator settings.

Implementation and exploration of realistic defibrillator waveforms for the human

torso simulation scenario. To achieve practical results of the defibrillation cur-

rent simulation the Gaussian pulse excitation waveform used in Section 6.13

should be replaced with monophasic and biphasic ascending exponential, as-

cending ramp, rectangular and descending exponential waveshapes [148].

Thin Slab method similar to [146] can be implemented for a correct calculation

of Debye relaxation media parameters in the main grid cells larger than the

medium size. Division of the main grid media parameters by the subgridding

ratio described in Section 6.13.3 is only a temporary measure.

8.3 Efficiency

Parallelisation of the dispersive HSG approach might be undertaken to further

improve the FDTD efficiency. It would be interesting to compare the CPU

and memory performance of the HSG method parallelised with conventional

MPI [149] approach, CUDA [150] or OpenCL [151] and novel truly parallel lan-

guage as Fortress [152] or Chapel [153].



Appendix A

Introduction to Defibrillation

This chapter gives a brief introduction to defibrillation. It explains the general steps

of the cardiac cycle and highlights the most important types of heart fibrillation

in Appendix A.1. Main part of this work is dedicated to defibrillation phenomenon

discussed in Appendix A.2.1. Devices used for defibrillation and their characteris-

tics are described in Appendix A.2.2. Finally, Appendix A.3 of this chapter presents

the approaches to study defibrillation with numerical simulation.

A.1 Basic Cardiography

Cells of cardiac conducting system and myocardium1 are polarised at rest. Bet-

ween the inside of the cell and the extracellular space exists a potential difference

of 90 mV. Rapid shift of calcium and sodium ions across the cell membrane causes

cell depolarisation.2 The cell property to depolarise spontaneously and regularly is

called automaticity. This depolarisation generates an electrical signal in the heart.

The electrical impulse passes through the conducting system of the heart. The con-

traction of myocardial cells is a mechanical reaction to an electric impulse.

Different parts of heart’s conducting system depolarise at different rates (Fi-

gure A.1). Fastest ‘pacemaker’ cells set the cardiac rhythm.

1“Myocardium—the middle of the three layers forming the wall of the heart (endocardium, my-

ocardium, epicardium). It is composed of cardiac muscle and forms the greater part of the heart

wall, being thicker in the ventricles than in the atria.” [154]
2“Depolarisation—a change in the value of the resting membrane potential towards zero. The in-

side of the cell becomes less negative compared to the outside. This is due to a change in permeabil-

ity and migration of sodium ions into the interior of the cell. Depolarisation is excitatory because the

membrane potential shifts towards the neuron’s threshold at which an action potential occurs.” [155]
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Figure A.1: Cardiac conducting system and rates of spontaneous depolarisa-
tion [156]

In a normal sinus rhythm the ‘pacemaker’ cells in the sinoatrial (SA) node3 (Fi-

gure A.2) start the process of depolarisation.

Then depolarisation spreads through the atrial myocardium and stimulates the

atrial contraction. Special tissue called Purkinje fibres conducts the electrical signal

to the ventricles. First the impulse is slowly conducted in the atrioventricular (AV)

node,4 followed by a rapid conduction in ventricular myocardium.

Then bundle of His5 (denoted as “Bundle branches” in Figure A.2) divides the

impulse and via the Purkinje fibres passes it to the right and left bundles and ventri-

cles. This rapid electric conduction ensures a well co-ordinated ventricle contrac-

tion.

3“Sinoatrial (SA) node—the pacemaker of the heart: a microscopic area of specialised cardiac

muscle located in the upper wall of the right atrium near the entry of the vena cava. Fibres of the

SA node are self-excitatory, contracting rhythmically at around 70 times per minute. Following each

contraction, the impulse spreads throughout the atrial muscle and into fibres connecting the SA

node with the atrioventricular node. The SA node is supplied by fibres of the autonomic nervous

system; impulses arriving at the node accelerate or decrease the heart rate.” [154]
4“Atrioventricular (AV) node—a mass of modified heart muscle situated in the lower middle part

of the right atrium. It receives the impulse to contract from the sinoatrial node, via the atria, and

transmits it through the atrioventricular bundle to the ventricles.” [154]
5“Bundle of His (atrioventricular bundle, AV bundle)—a bundle of modified heart muscle fibres

(Purkinje fibres) passing from the atrioventricular (AV) node forward to the septum between the

ventricles, where it divides into right and left bundles, one for each ventricle. The fibres transmit

contraction waves from the atria, via the AV node, to the ventricles.” [154]
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Figure A.2: Electric impulse conduction through heart [157]
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Figure A.3 shows one period of the electrocardiogram (ECG) for a normal sinus

rhythm (Figure A.4a). Atrial contraction is indicated as a P wave. The peaks of the

QRS complex are the depolarisation of bundle of His, left and right branches and

the ventricular myocardium. T wave peak illustrates the potential recovery in the

cells of conducting system and ventricular myocardium. Normal QRS complex lasts

for 0.12 s.

Figure A.3: Normal ECG signal components [156]. Abscissa shows the time and
ordinate—the voltage.

Cardiac arrest rhythms include Ventricular Fibrillation (VF)6 (Figures A.4b and A.4c),

some cases of Ventricular Tachycardia (VT)7 (Figures A.4d to A.4f), asystole and

Pulseless Electrical Activity (PEA). AF (Figure A.4g) is the most common form of ar-

rhythmia. All of these cardiac arrest rhythms are treated with defibrillation.

6“Fibrillation—chaotic electrical and mechanical activity of a heart chamber, which results in loss

of synchronous contraction. The affected part of the heart then ceases to pump blood. Fibrillation

may affect the atria or ventricles independently. In atrial fibrillation (a common type of arrhythmia),

the chaotic electrical activity of the atria is conducted to the ventricles in a random manner resulting

in a rapid and irregular pulse rate. When ventricular fibrillation occurs the ventricles stop beating. It

is most commonly the result of myocardial infarction.” [154]
7“Ventricular Tachycardia (VT)—a dangerously fast beating of the heart stemming from an ab-

normal focus of electrical activity in the ventricles. The electricity does not pass through the heart

along the usual channels and as a result the contraction of the heart muscle is often not as efficient

as normal, which can result in a sudden drop in blood pressure or even cardiac arrest.” [154]
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(a) Normal Sinus Rhythm

(b) Coarse Ventricular Fibrillation

(c) Fine Ventricular Fibrillation

(d) Monomorphic Ventricular Tachycardia

(e) Ventricular Tachycardia with Capture and Fusion Beats

(f) Ventricular Tachycardia Torsade de Pointes

(g) Atrial Fibrillation

Figure A.4: Important ECG Rhythms [156]. Abscissa shows the time and ordinate—
the voltage.
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A.2 Defibrillation

A.2.1 General Knowledge

In Europe approximately 700000 deaths a year are accredited to a sudden cardiac

arrest [158]. The only effective therapy for a cardiac arrest caused by VF or VT is

electrical defibrillation. No drugs have similar positive effect on restoration of the

cardiac function.

With the onset of ventricular fibrillation or pulseless ventricular tachycardia the

cardiac output ceases. Within 3 min begins the cerebral hypoxic injury. Conduction

of an early successful defibrillation is vital to achieve complete neurological recov-

ery.

“Defibrillation is the passage of an electrical current of sufficient magnitude to

depolarise a critical mass of myocardium and enable restoration of coordinated

electrical activity.” [159] Defibrillation success rate decreases by 7–10% (without

Cardiopulmonary Resuscitation (CPR)8) and by 3–4% (with CPR: 30 compressions,

2 ventilations) for every minute passing after the collapse. Figure A.5 shows the ef-

fect of time delay on the success of defibrillation. Figure A.6 illustrates a drastic

decrease of amplitude strength with time in VF. Defibrillation is successful if no VF

or VT exists 5 s after the shock delivery. But ultimately the return of spontaneous

circulation (ROSC) is required.

Success of defibrillation is proportional to the the amount of current transferred

to myocardium. The necessary amount of current is difficult to identify. It depends

on a number of factors: the transthoracic impedance (TTI), electrode position, pa-

tient’s metabolic state, extent of myocardial ishaemia and the previous drug therapy.

TTI is defined as the human body resistance to electric current [161]. TTI is influ-

enced by an electrode-to-skin contact, body size, electrode or paddle size, paddle–

skin coupling material, paddle force and the phase of ventilation [156, 160]. For a

normal adult TTI varies between 70 and 80 Ω. But using an incorrect technique for

8“Cardiopulmonary Resuscitation (CPR)—an emergency procedure for life support, consisting of

artificial respiration and manual external cardiac massage. It is used in cases of cardiac arrest or ap-

parent sudden death resulting from electric shock, drowning, respiratory arrest, or other causes, to

establish effective circulation and ventilation in order to prevent irreversible brain damage. External

cardiac massage compresses the heart, forcing blood into the systemic and pulmonary circulation;

venous blood refills the heart when the compression is released. Mouth-to-mouth resuscitation or

a mechanical form of ventilation oxygenates the blood being pumped through the circulatory sys-

tem.” [154]
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Figure A.5: Effect of time on defibrillation success [160]

(a) Onset

(b) 5 min

(c) 10 min

Figure A.6: Amplitude deterioration with time in VF [160]. Abscissa shows the time
and ordinate—the voltage.
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defibrillation might cause TTI increase up to 150 Ω. Some modern defibrillators

have an impedance compensation functionality. They can measure the TTI and au-

tomatically adjust the current required for defibrillation.

(a) Manual Defibrillator (b) Automated External Defibrilla-
tor

Figure A.7: Defibrillator Types [156]

A.2.2 Defibrillator Devices

Manual and Automated Defibrillators

All defibrillators consist of three major parts: (i) power source to provide direct

current (DC), (ii) capacitor to contain the electric energy and (iii) electrodes, that

conduct current through the patient’s chest at capacitor’s discharge. Two types of

defibrillators—manual defibrillator (MD) and automated external defibrillator (AED)

are shown in Figure A.7. Operating manual defibrillators requires high level of med-

ical expertise, while use of automated external defibrillators is relatively simple and

intended for lay users. Most AED models are equipped with audio and visual guides

and will direct the user during the defibrillation process. AED can analyse victim’s

rhythm, determine a need for shock and deliver the shock [158]. AED is safer to use,

since the self-adhesive paddles allow the operator to discharge the current from a

distance. While operating an MD the user has to lean over the patient. Self-adhesive

paddles of AED also enable quicker delivery of the electric shock [156].
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Electrode Shape

There is no clear recommendation on the optimal electrode shape. Most industrial

defibrillators have electrodes of a rectangular form with one direction longer than

another and rounded corners [156, 161–163].

Electrode Size

Electrode size is inversely proportional to the transthoracic impedance. Larger elec-

trodes can successfully defibrillate a patient with higher TTI value. On the other

hand a size balance is important, since larger electrodes might overdose a patient

with lower TTI value [161, 164]. Sum of both defibrillator electrode areas should be

larger than 150 cm2. Diameter of handheld and self-adhesive electrodes used in

practice is in the range of 8 to 12 cm [156, 162, 165, 166].

Electrode Placement

Only 4% of the discharged current will reach the heart, the rest will be diverted by

other body parts [156]. Therefore electrodes should be positioned to maximise the

current flow through the heart. Fibrillating area of the heart (ventricles in VF, atria

in Atrial Fibrillation (AF)) should lie directly beneath the electrodes.

VF or VT, Sterno-apical: sternal electrode should be placed to the upper right part

of the sternum and apical electrode should be centred over the 5th left in-

tercostal space in the mid-axillary line, corresponding to the cardiac apex,

approximately level with the V6 ECG electrode or the female breast. To re-

duce impedance the long side of the latter electrode should lie parallel to the

mid-axillary axis [156, 159, 160]. Figure A.8 illustrates the standard electrode

placement.

AF, Anteroposterior: one electrode is placed anteriorly, over the left precordium,

and the other on the back, behind the heart, inferior to the left scapula [156,

167–169].

Alternatively: bi-axillary electrode placement can be used. Electrodes are situated

on the left and right sides of lateral chest walls.
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Figure A.8: Standard electrode positions for defibrillation [156]

A.2.3 Defibrillator Waveforms

There exist two main resuscitation strategies: first utilises single defibrillation shock

followed by CPR and the second three-shock defibrillation with CPR. Modern de-

fibrillators use two types of current waveforms: monophasic, with direct current

flowing in only one direction and biphasic with current flowing in positive and then

negative direction.

No published research exists comparing the single- versus three-shock sequence

of defibrillation. But the first-shock efficacy of biphasic defibrillators for a long du-

ration VF or VT is 86–98%, compared with 54–91% of monophasic [156]. There-

fore the latest edition of Resuscitation Guidelines [158] recommends a single-shock

strategy with a biphasic defibrillator. Monophasic devices are not manufactured

anymore, but are still being used in various places.

Suggested current and energy levels for monophasic defibrillator are 30–40 A,

360 J and 15–20 A, 120–150 J for biphasic [156].

Monophasic defibrillators use damped sinusoidal waveform (Figure A.9a). Bipha-

sic defibrillators apply Biphasic Truncated Exponential (BTE) (Figure A.9b) or Recti-

linear Biphasic (RLB) (Figure A.9c) waveform. Minimum levels for the initial bipha-

sic shock energy should be 150 J for BTE and 120 J for RLB. Usually a default value of

200 J is pre-set in modern defibrillators. There is no clear evidence supporting the

fixed or escalating energy protocol for every consecutive shock [158].

Current and energy are the important parameters for defibrillation. Previously

more emphasis was placed on the energy setting. Resuscitation guidelines [158]

identify the need to shift from the energy-based to current-based defibrillation, since
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Figure A.9: Modern waveforms [156]
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it is the current that achieves the actual defibrillation. Peak current amplitude, av-

erage current and the phase duration are the parameters that should be studied.

Modern research on optimal waveforms for defibrillators should consider such

factors as the amount of energy delivered to the patient, peak current, energy to be

stored in the capacitor and the maximum voltage of operation. To improve defibril-

lator efficacy a waveform should be of low energy and low peak current [164]. Bipha-

sic waveform is more effective at cardioversion of atrial and ventricular arrhythmias

at lower energy levels [159]. Work conducted by Schönegg and Bolz [164] suggests

that modern waveforms are not definitely superior to historic waveforms. Gurvich

waveform [170] provides the best defined simulation with different impedances.

BTE was found to be less sufficient with high TTI and capable of overdosing a pa-

tient with low TTI. Moreover, the electric impulse durations in modern waveforms

are longer than needed.
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Figure A.10: Waveform evolution [170, 171]

Figure A.10 illustrates evolution of the defibrillator waveform. Naum Gurvich

worked in the USSR and first published a biphasic defibrillator waveform in 1939.

Due to the Iron Curtain there was little scientific communication between the USSR

and other countries. Biphasic waveform was independently discovered by Bernard

Lown in the USA in the 1960s. The term Lown waveform is more common in the

Western literature, than the Gurvich waveform, but both terms refer to the biphasic
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defibrillator waveform [170, 171].

A.3 Numerical Simulation of Defibrillation

A.3.1 Application of Computational Electromagnetics

In general two Computational Electromagnetics (CEM) methods are used to solve

Maxwell’s equations inside the human body—Finite-Difference Time-Domain (FDTD)

and Transmission Line Matrix (TLM) Cell Method [172–175]. In these methods the

simulation space is modelled with a three-dimensional (3D) Cartesian grid, where

material properties are specified at each grid point. Typical grid resolutions used in

FDTD and TLM are 2 mm for the entire human body simulation and 0.8–1.0 mm for

the human heart only [172, 174–176].

Strategy to study human body response to defibrillation could consist of the fol-

lowing steps:

1. Calculate peak current densities J
(
i , j , k

)
at each point inside and outside of

the heart:

J
(
i , j , k

)=σ(
i , j , k

)
·
√

E 2
x
(
i , j , k

)+E 2
y
(
i , j , k

)+E 2
z
(
i , j , k

)
. (A.1)

2. Calculate current distribution I
(
i , j , k

)
at each point in the heart:

I
(
i , j , k

)= J
(
i , j , k

)
·Sp . (A.2)

3. Calculate total current Itot flowing through the heart:

Itot =
P∑

p=1
I
(
i , j , k

)
, (A.3)

where
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i , j , k grid point coordinates in x, y, z-axes,

σ electric conductivity [S/m],

I electric current [A],

J electric current density
[
A/m2

]
,

E electric field [V/m],

Sp surface area of grid point p,

P total number of surface grid points.

4. Plot energy gradient curves in different areas around the heart.

5. Compare current flow in different areas of the heart for various defibrillation

settings.

A.3.2 Explanation of Defibrillation Phenomenon

Knowledge about the restoration of heart function through defibrillation is incom-

plete. This is due to a complex pattern of current distribution inside ventricles dur-

ing and after the electric shock. Usually defibrillation is presented as a two step

process: (i) shock current is applied to myocardium initiating complex polarisation

changes in transmembrane potential distribution, and (ii) potential distribution in-

vokes active membrane reactions that terminate fibrillation wave fronts.

Two major hypotheses exist, that explain the defibrillation mechanism: Critical

Mass (CM) and the Upper Limit of Vulnerability (ULV) [177]. CM states that a critical

amount of tissue sustains fibrillation. On the contrary ULV poses that VF must be

extinguished everywhere throughout the heart. To achieve complete defibrillation a

certain electric potential gradient has to be established everywhere inside the heart.

Electric potential is calculated using the FEM applied to the variational formulation

of potential field distribution based on the experimental data. Electric potential

gradients in x, y, z directions are also calculated with help of FEM and the brick

element mesh. Frazier et al. in the Appendix of [178] explain the calculation of

electric potential and electric potential gradients in detail.

A.3.3 Approaches to Study Fibrillation

Major approaches to study fibrillation in the human heart are (i) electric current

distribution around the heart and (ii) myocardial cell potential method.
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Electric current distribution methods such as an electrical computer model [179]

and a rheographic model9 [180] determine the amount of current that will arrive

to myocardium cells. Computational electromagnetic methods such as FDTD and

TLM can be employed to obtain the electric current distribution.

Myocardial cell potential approach mainly based on bidomain model [181] gave

birth to a multitude of schemes: reentry drift [181–184], ventricular anatomy com-

parison [185], dynamics of scroll wave filaments [185] and Virtual Electrode Pat-

tern (VEP) analysis [177]. Compared to current distribution approach the cell po-

tential approach is better, since it simulates the real behaviour of myocardium cells.

But the most benefit could be achieved combining two approaches [186]. Cal-

culating the electric current distribution with a CEM software first and then using

the distribution results in a myocardial cell potential scheme. Applying both ap-

proaches will enable an effective study of an optimal defibrillator electrode place-

ment. Important criteria that should be studied are: the amount of energy deliv-

ered to the myocardium, electric current density around the heart, energy losses

in human body tissues and impedance along the current paths. Each electrode

placement can be evaluated according to the highest possible potential difference

through the myocardium, homogeneity of current distribution in the heart and the

ratio of energy reaching the heart to the total energy delivered [186].

A.3.4 Modelling Defibrillator Waveforms

In CEM software biphasic defibrillator waveforms could be modelled using the gen-

eralised Charge-Burping theory. This theory predicts the time course of the cell

membrane potential during a biphasic shock pulse. Charge-Burping theory origi-

nated in the work of Mark Kroll [187]. Detailed explanation of Charge-Burping equa-

tions is given in the appendices to publications of Yoshio Yamanouchi [188, 189].

9Rheographic model consists of the cross-sections of the thorax at the level of the heart. Each

tissue is characterised with electric conductivity values at the elementary cubes of the model. Every

elementary cube is represented by six connected resistors. Connected resistor network enables the

simulation of anisotropic, nonlinear or capacitor tissue behaviour. The resulting voltage applied

between any two or more points of the model can be calculated on a computer. Different potentials

of the resistor network nodes are identified with the Kirchhoff’s law. Finally, the equipotential lines

can be drawn on a thorax cross-section [180].
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[B8] M. Abaļenkovs*, F. Costen and J.-P. Bérenger, “Huygens subgridding with fil-

tering for Finite-Difference Time-Domain method,” in 2nd Postgraduate Con-

ference of Engineering and Physical Sciences Faculty, The University of Manch-

ester, UK, Nov. 25, 2009, poster presentation.

Short Talks

[B9] M. Abaļenkovs*, F. Costen and J.-P. Bérenger, “Huygens subgridding for Fre-

quency-Dependent Finite-Difference Time-Domain method,” Jul. 1, 2010, Com-

putational Electromagnetics Meeting, The University of Manchester, UK, short

talk.
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