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Abstract—This publication presents a matrix casting approach
for the FDTD method. Applied in 2D and 3D, dimensions it is
subsequently parallelised with OpenMP and tested in basic air-
filled and realistic landmine-detection scenarios.

Index Terms—electromagnetic propagation, numerical simula-
tion, performance analysis, finite difference methods.

I. Introduction

A high-precision simulation of electromagnetic behaviour
of large-scale devices with fine geometric features requires
advanced numerical techniques. Apart from high geometric
resolution, the method should provide high computational
performance. One popular choice in the world of Computa-
tional Electromagnetics is the Finite-Difference Time-Domain
(FDTD) method [1]. Following the 1D prototype presented
in [2], this project explores the idea of matrix casting further.
Here it is applied to 2D and 3D electromagnetic field updates,
that are represented in terms of matrix–vector products.

New CPU architectures feature Fused Multiply-Add (FMA)
instruction sets that allow floating point multiplication fol-
lowed by addition to be performed as a single floating point
operation, i.e. Fused Multiply-Add operation will require the
same number of CPU cycles as a single multiplication or
addition [3]. Advanced Vector Extensions (AVX) constitute
another important development in the area of SIMD instruction
sets. AVX allows the CPU vector units to process multiple
numbers simultaneously. For example, a modern Haswell CPU
with FMA and AVX2 instruction sets can perform 16 double
precision FLoating-point Operations (FLOPs) per cycle [4].

Unexploded Ordnance (UXO) presents a humanitarian and
environmental problem worldwide. The land contaminated by
explosives equates to ≈ 300 km2. The number of severe
injuries and causalities rises to above 4000 people per year,
of whom 42% are children [5]. Demining is an expensive
and time consuming task. The demining process also involves
the recognition and rejection of metallic clutter. There are
approximately 100 to 1000 inert objects for every mine.
Usually UXO detection relies on a metal detector, that ex-
ploits the Electromagnetic Induction (EMI) principle. The EMI
system consists of an excitation coil Tx, emitting primary
magnetic field and a receiver coil Rx, measuring the induced
field, scattering from a metallic object. The primary magnetic
field creates Eddy currents in a metallic object. The object
demagnetises and emits a secondary field, that will be detected
at the receiver. The information about the size, shape, material,
location and orientation of the target can be represented by

means of a magnetic polarisability tensor [5], [6]. To address
the vital problem of the UXO detection, the 3D FDTD solver
with matrix casting will be applied to simulate the EMI
scenario.

This publication is arranged as follows: Section II outlines
the mathematical idea of matrix casting, Section III presents
possible ways to parallelise FDTD for shared memory archi-
tectures, Section IV describes the testing scenarios (including
the problem of EMI) and analyses the numerical results, while
Section V concludes the narrative and drafts the plan for future
work.

II. Mathematical Background

A. Solution of Maxwell’s Equations in the FDTD Method

Eqs. (1) and (2) define Maxwell’s curl equations for linear,
isotropic, non-dispersive and lossy materials:

ε
∂E

∂t
= ∇×H − J − σE, (1)

µ
∂H

∂t
= −∇×E −K − σ∗H, (2)

where E,H stand for electric and magnetic fields, J ,K are
electric and magnetic source currents, ε, µ denote the electric
permittivity and magnetic permeability, and σ, σ∗ symbolise
electric conductivity and the equivalent magnetic loss.

Expanding vector components in Cartesian coordinates
and eliminating partial derivatives with respect to z-axis,
Maxwell’s equations reduce to 2D. This form is known as
the transverse-electric mode with respect to z (TEz):
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B. Casting Stencil-based Equations into Matrix Form

In classical FDTD method partial derivatives representing
time and space are approximated with central-differences [7].
Applying approximations to Eqs. (3) to (5) results in a dis-
cretised form of the equations. To simplify the notation and
increase the computational efficiency of the method, discrete



equations can be cast into a matrix form. Electric field updates
will be governed by the following matrix–vector product:
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Γ1 =

1− σ∆t/2ε

1 + σ∆t/2ε
, Γ2 =

∆t/ε

1 + σ∆t/2ε
. (10)

Magnetic field component Hz will be updated by the inner
product of two vectors:
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with
Z1 =
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1 + σ∗∆t/2µ

, Z2 =
∆t/µ

1 + σ∗∆t/2µ
. (12)

Parameters σ, ε, σ∗, µ are location-dependent, but the spatial
indices were omitted from Eqs. (10) and (12) for clarity.

In case of a full-wave FDTD solver in 3D discretised
Maxwell’s equations can be cast into two matrix–vector pro-
ducts. For the sake of brevity, these equations are omitted in
this publication.

III. Parallelising Matrix Form Equations
with OpenMP

The majority of modern CPUs support FMA and AVX
instructions, i.e. they are capable of scheduling a series of
algebraic operations and performing them in one cycle. Apart
from casting the equations into a matrix form, further reduction
of the execution time may be expected from the vectorisation
offered by the FMA and AVX instructions [3], [4]. Another
dimension improving the performance of the stencil-based
code is provided by multiple cores of contemporary CPU.
OpenMP framework [8] is one of the most popular tools to
exploit the shared memory parallelism of the FDTD solver.

The following ways to calculate the electromagnetic field
values were implemented and tested in this project:

expl uses explicit finite-difference formulae
func applies custom, user-defined function to compute the

stencil
dotp relies on Fortran intrinsic function dot_product()

!$omp parallel do

do i = imin, imax

do j = jmin, jmax

! expl pre

E(i,j,1) = Gm(i,j,1)* E(i,j,1) + &

Gm(i,j,2)*(Hz(i,j)-Hz(i,j-1))/dy

E(i,j,2) = Gm(i,j,1)* E(i,j,2) + &

Gm(i,j,2)*(Hz(i-1,j)-Hz(i,j))/dx

! func pre

E(i,j,1) = calc_E( Gm(i,j,:), E(i,j,1), &

Hz(i,j), Hz(i,j-1), dy )

E(i,j,2) = calc_E( Gm(i,j,:), E(i,j,2), &

Hz(i-1,j), Hz(i,j), dx )

! matm pre

E(i,j,:) = matmul(Gm(i,j,:), &

reshape([E(i,j,1), (Hz(i,j)-Hz(i,j-1))/dy, &

E(i,j,2), (Hz(i-1,j)-Hz(i,j))/dx], [2, 2]))

! dotp pre

E(i,j,1) = dot_product(Gm(i,j,:), &

[E(i,j,1), (Hz(i,j)-Hz(i,j-1))/dy])

E(i,j,2) = dot_product(Gm(i,j,:), &

[E(i,j,2), (Hz(i-1,j)-Hz(i,j))/dx])

end do

end do

!$omp end parallel do

Fig. 1. Fortran code with OpenMP pragmas (2D case)

ddot utilises BLAS function ddot() to perform the vector
dot product

dgmv adopts BLAS routine dgemv() to calculate a matrix–
vector product

matm employs Fortran intrinsic function matmul()

dgmmcomputes a matrix–matrix product by means of
a BLAS function dgemm()

Fig. 1 shows four different approaches to updating electro-
magnetic field values. Only one of the alternatives is required
in a practical FDTD solver. The loops over space coordinates
i, j were parallelised with $omp parallel do pragmas. For
the sake of simplicity, only electric field updates with pre-
computed coefficients Γ{1, 2} are illustrated in 2D. Magnetic
field updates with dynamically “just-in-time” calculated coef-
ficients Z{1, 2} in 3D are obtained by analogy.

IV. Numerical Results

A. Experiment Setup

Three sets of experiments were run in order to analyse
performance of the parallel matrix casting approach in the 2D
and 3D FDTD methods. Fig. 2 illustrates the scenario setting
in 2D case. The simulation domain occupied a square filled
with air. In all of the experiments the computation space has
been terminated by 1st order Mur’s Absorbing Boundary Con-
dition (ABC) [9]. Excitation source and the observation point
were placed on the horizontal axis of symmetry. A Gaussian
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Fig. 2. Air-filled 2D FDTD scenario setting. Excitation source is marked
with a square and the observation point—with a circle (both are shown in
magenta colour). The scale is not observed.

pulse has been used as a “soft” source to excite the y (2D) or
z (3D) component of the electric field:

Jn
src = exp

[
− ({t− 3T}/T )

2
]
, with T = mf−1max. (13)

Table II lists all FDTD simulation parameters in detail.
Each column of Table II corresponds to a particular set
of experiments: (i) 2D, (ii) 3D and (iii) EMI. Symbols
n{i, j, k, t} denote the spatio-temporal dimensions of the grid,
Tx, Rx mark locations of the excitation and observation points,
∆{x, y, z, t} set the spatio-temporal increments of the nume-
rical method, NCFL is the Courant–Friedrichs–Lewy (CFL)
condition number, χ is the numerical resolution (number of
points per wavelength), fmax describes the maximum wave
frequency, while m is the width factor of the Gaussian pulse
(See Eq. (13) for details). If a parameter value in the 3D case
coincided with the value in the 2D case, it was not duplicated
in the table. To make the computation workload in the 2D case
equivalent to 3D, the spatial domains in experiments (i) and
(ii) were set to 3162 ≈ 463. Each experiment in air-filled 2D
and 3D scenarios was run 10 times, and Figs. 4 and 5 present
averaged results.

The third set of experiments addresses a practical appli-
cation of the FDTD method to a UXO detection [10]. Only
the forward part of the detection problem is considered in
this project. The testing scenario depicted in Fig. 3 emulates
low-frequency EMI—a popular method used for UXO detec-
tion. Transmitter coil Tx is modelled by the two plates of
0.3 m×0.3 m, where the top plate is made of steel. The bottom
plate serves as a plane wave emitter. It injects magnetic current

TABLE I
Material specifications

Propagation medium σ [S/m] εr σ∗ [Ω/m] µr

Air 0.0 1.0 0.0 1.0
Soil 1.0 1.0 0.0 1.0
Stainless steel (grade 316) 1.3× 106 1.0 0.0 1.0
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Fig. 3. EMI 3D FDTD scenario setting in isometric projection. All sizes
are shown in metres. Transmitter coil Tx with excitation sources is denoted by
a rectangle and the receiver coil Rx with an observation point—by a sphere
(both are shown in magenta colour). The scale is not observed.

K into the z component of the magnetic field. Receiver coil
Rx is modelled by an observation point offset by 0.01 m down
the y-axis. The lower part of the spatial domain is occupied
by a 0.4 m × 0.4 m × 0.26 m soil medium. Finally, the test
UXO object of size 0.001 m3 was buried 0.2 m under the
ground. The material specifications used in this scenario are
given in Table I. The transmitter plate and the landmine were
made of steel. The upper part of the domain was occupied
by air and the lower part—by the soil medium. The signal
was transmitted at a typical EMI frequency fmax = 1.58 kHz.
To properly accommodate the landmine in the simulation,
the spatial increments were set to ∆{x, y, z} = 2 mm. The
simulation lasted for t = 1 ms.

B. Hardware Platform

Numerical experiments were performed on the Saturn Alem-
bert cluster at the Innovative Computing Laboratory (ICL)
at University of Tennessee in Knoxville (UTK). A detailed
hardware platform specification is given in Table III.

The software has been compiled with the Intel Fortran
compiler ifort, version 17.0.4 (20170411) using -O3

-ipo -xCORE-AVX2 -funroll-loops -fma -qopenmp -w

-vec-report0 -opt-report0 flags.

TABLE II
Simulation settings

Parameter 2D case 3D case EMI case

n{i, j, k} 3162 463 2002 × 180
nt 105 279170
source type soft
Tx location (79, 158) (12, 23, 23) x, y ∈ [25, 175], z = 150
Rx location (237, 158) (34, 23, 23) (100, 100, 145)
∆{x, y, z} 5cm 2mm
∆t 109.667ps 89.551ps 3.582ps
NCFL 0.93
χ 20 9.487× 107

fmax 2.998GHz 1.58kHz
m 0.5 2.75× 106
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Fig. 4. No. of OpenMP threads vs execution time in 2D FDTD

Execution time has been measured by means of the
cpu_time() Fortran subroutine.

C. Result Analysis

Fig. 4 presents performance results for various stencil
updates in 2D FDTD. Abbreviations jit and pre denote
the FDTD update equations with “just-in-time” calculated
and pre-computed coefficients Γ{1, 2}, Z{1, 2}. The most high-
performing alternative for the electromagnetic field update is
expl pre, which provides 22.53% change over the second-
best curve achieved by the matrix cast formulation with pre-
computed coefficients dotp pre. Variants expl jit, dotp jit

and func jit approach the best results for a high number of
OpenMP threads (nthr ≥ 12). On the other hand implementa-
tions based on the matrix–matrix product matm jit, matm pre

and the variant using user-defined update function func pre

did not bring the expected performance benefit.
Fig. 5 compares performance of standard stencil updates

with the matrix casting approach. In the 3D case, the explicit
update curves expl jit and expl pre almost overlap with
each other. The percentage change between expl jit and
expl pre constitutes 9.09%. There is a considerable perfor-
mance gap between expl jit and the second-best alternatives
dotp pre, func jit and func pre. The percentage change
between expl jit and dotp pre equals 89.45%. Another in-
teresting observation is the overlapping of jit and pre variants

TABLE III
Testing system specification

Parameter Value

Operating System Scientific Linux 7.3 (Nitrogen)
Kernel 3.10.0
CPU Specification Intel Xeon CPU E5-2650 v3, 2.30GHz
L2 Cache Size 25MB
CPU = Sockets × Cores 20 = 2× 10
Address sizes 46 bits physical, 48 bits virtual
Memory, total 64GB
Interconnect Mellanox, InfiniBand (EDR 100Gb/s)
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Fig. 5. No. of OpenMP threads vs execution time in 3D FDTD

of the expl and func-based approaches. Contrary to the 2D
case, pre-computing FDTD coefficients Γ{1, 2}, Z{1, 2} results
in a negligible performance boost. The shortest computation
time is obtained with nthr = 20 for both 2D and 3D cases.
However, for these small spatial domain sizes (3162 and
463) the performance curves are likely to saturate and exhibit
constant or larger computation time behaviour for nthr ≥ 20.

Alternative formulations based on BLAS routines [11]
ddot(), dgemv() and dgemm() resulted in the lowest per-
formance overall. Therefore, their performance curves were
omitted from the plots in Figs. 4 and 5. Potentially, the low
performance of the BLAS-based variants is due to the time
overhead caused by calling the routines. The small stencil
size of the standard 2nd order Yee scheme [7] results in
a short computation time. Most likely the computation time
of an FDTD stencil is much shorter, than the calling time of
a BLAS routine. Hence, the total performance of the BLAS-
based versions is low.

The matrix casting approach is beneficial in 2D FDTD using
the dotp pre update alternative with nthr ≥ 4. But the perfor-
mance benefit is negligible compared to the standard explicit
update variation with pre-computed coefficients expl pre.
The performance pattern is slightly different in the 3D case.
Again explicit update variants outperform the matrix casting
approach, but with a much larger difference. Potential reasons
hindering the performance of matrix casting in 3D might
be (i) the small size of the spatial domain providing little
parallelism potential, (ii) the loop unrolling effect created by
a compiler option -funroll-loops and (iii) the high amount
of L2 cache misses caused by the unsuitable memory layout
of neighbouring points used in the stencil calculation.

Fig. 6 shows performance curves for the two fastest al-
ternatives (expl and dotp) to calculate electromagnetic field
update in the EMI scenario (See Fig. 3 for details). In the
EMI test case, the matrix casting approach dotp pre matches
the explicit stencil calculation expl jit for nthr ≤ 12. For
higher numbers of OpenMP threads expl jit outperforms
dotp pre. The overall percentage change between these two
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curves mounts to 8.61%. This proves the hypothesis of little
parallelism in small spatial domains. The peak performance
is reached with the expl jit variation for nthr = 20. The
application of expl pre and dotp jit calculation alternatives
produces considerable performance drawbacks.

Finally, Fig. 7 shows the normalised magnitude of elec-
tromagnetic fields at the observation point. No numerical
instabilities are noticeable after 279170 time steps. This proves
numerical stability of the matrix casting approach and its
equivalence to the standard explicit update experimentally.

V. Conclusion and Future work

The matrix casting approach for the calculation of electro-
magnetic field updates in 2D and 3D FDTD method has been
presented. This technique has been parallelised by means of
the OpenMP framework and tested in air-filled scenarios. Ma-
trix casting has also been applied in a practical UXO detection
scenario. Current formulation of matrix casting is beneficial
in a 2D FDTD method for nthr ≥ 4, but the performance
benefit is minor. The most high-performing update variation
in 2D and 3D is the explicit formulation expl jit with
FDTD coefficients Γ{1, 2}, Z{1, 2} calculated “just-in-time”.
For large spatial domains in 3D, matrix casting reaches the
same or lower performance compared to the standard update
formulation.

The reasons for lower performance of matrix casting in 3D
are being investigated at the moment. This includes the study
of L2 cache misses, potential reordering of the neighbouring
grid elements in memory and the application of Batched
BLAS [12] for the calculation of FDTD stencils in large
batches.
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