

# **Towards Parallel 2D R-Matrix Propagation Codes** for Multicore Architectures

Maksims Abalenkovs<sup>\*</sup> David Stevens<sup>†</sup> Andrew Sunderland<sup>‡</sup> Stan Scott<sup>§</sup>

\*Alan Turing Building 2.233, School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, UK <sup>†</sup>Department of Geography, The University of Sheffield, Sheffield S10 2TN, UK

<sup>‡</sup>The Hartree Centre, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick, Daresbury, Warrington WA4 4AD, UK <sup>§</sup>School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, University Road, Belfast BT7 1NN, UK m.abalenkovs@manchester.ac.uk d.r.stevens@sheffield.ac.uk andrew.sunderland@stfc.ac.uk ns.scott@qub.ac.uk

## Abstract

The work presented in this publication proposes a major update to the 2DRMP software. The code has been instrumented with the ability to apply novel PLASMA routines alternatively to the standard LA-PACK package. Performance of PLASMA was compared against industrial libraries—Intel MKL and ARMPL. Two types of experiments (i) artificial linear algebra kernel runs and (ii) realistic 2DRMP

#### **Kernel Tests**



scenario runs were conducted on two different supercomputers—Intel Skylake-based MareNostrum4 and ARM Cavium-based Wombat.

## **2D R-Matrix Propagation Codes (2DRMP)**

- + Aimed at study of electron scattering from H-like atoms and ions at intermediate energies [1].
- + Based on two-dimensional R-matrix propagation theory.
- + Constructs local R-matrices within each subregion to propagate a global R-matrix.
- + Relies on three linear algebra *kernels*: eigenvalue decomposition DSYEVD, linear system solution DGESV and matrix multiplication DGEMM.

#### Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA)

#### (a) MareNostrum





30



2000

(a) Routine stack

(b) Structure

## Figure 1: PLASMA routine stack and structure

+ Open-source dense linear algebra package for shared-memory architectures [2].

- + Research project aimed at developing new algorithms and schedulling techniques.
- + Operates on matrix *tiles*—rectangular blocks of original matrices.
- + Implements tile-based algorithms via OpenMP task depend construct.
- + Relies on OpenMP runtime for dynamic, task-based schedulling.

## **Numerical Results**

#### Simulation Settings

- + Two sets of experiments were run: one on the linear algebra kernels and another on the 2DRMP method.
- + Three linear algebra kernels were tested: eigenvalue decomposition DSYEVD, linear system solution DGESV and matrix multiplication DGEMM.
- + Performance of PLASMA v18.11.1 was compared with vendor optimised mathematical libraries: Intel Math Kernel Library (MKL) v2019.3 and ARM Performance Library (ARMPL) v19.1.
- + PLASMA was tuned for optimal tile size nb, inner block size ib and maximum number of threads per panel mtpf for every matrix order n.
- + Realistic 2DRMP testing scenarios were obtained by increasing the maximum principal quantum number of the basis orbitals  $n_{\text{max}} \in \{25, 30, 35\}$ .

#### Hardware Platforms

- + Numerical experiments were run on a single node of two different HPC systems:
- MareNostrum4 node:  $2 \times 24$  core Intel Xeon Platinum CPU 8160 (Skylake) @ 2.1 GHz,  $n_{thr} = 48$ .
- Wombat node: 2 × 28 core ARM Cavium ThunderX2 CPU @ 2.0 GHz,  $n_{\text{thr}} = 56$ .

#### **2DRMP Tests**

900 800

200

100

1000

Gflop/s  $\frac{300}{400}$ 



(a) Matrix multiplication DGEMM

#### (b) Linear system solution DGESV

Figure 4: Profile of matrix sizes in 2DRMP



+ The kernel and 2DRMP source codes were compiled with:

• GNU gfortran v8.1 using -03 -fopenmp -march=skylake-avx512 flags.

• ARM armflang v19.1 using -03 -fopenmp -armpl=parallel -mcpu=thunderx2t99 flags.

+ Execution time was measured with the omp\_get\_wtime() routine.

+ Performance results denoted in the plots by superscript letters "np" were launched via numactl --interleave=all with OpenMP processor binding (OMP\_PROC\_BIND=true).

### Acknowledgements

- + The EPSRC grant (EP/M01147X/1) for the Scale-free, Energy-aware, Resilient and Transparent Adaptation (SERT) project.
- + The Horizon 2020 FET–HPC grant (671633) for the Parallel Numerical Linear Algebra for Extreme Scale Systems (NLAFET) project.
- + The Horizon 2020 HPC–Europa3 programme (INFRAIA-2016-1-730897) and Barcelona Supercomputing Center (BSC) for access to the MareNostrum4 supercomputer.

(b) Wombat

**Figure 5:** Linear system solution and eigenvalue decomposition kernels DGESV and DSYEVD

## **Conclusion and Future Work**

+ Industrial libraries with low-level Assembly optimisations outperform tile-based PLASMA in common linear algebra operations—matrix multiplication DGEMM and linear system solution DGESV.

+ Expand 2DRMP parallelisation to distributed memory systems via the promising Software for Linear Algebra Targeting Exascale (SLATE) package.

+ Implement, apply and test *non-tiled* version of PLASMA algorithms.

## References

[1] N. S. Scott, M. P. Scott, P. G. Burke, T. Stitt, V. Faro-Maza, C. Denis, and A. Maniopoulou, "2DRMP: A suite of two-dimensional R-matrix propagation codes," Computer Physics Communications, vol. 180, no. 12, pp. 2424–2449, 2009.

[2] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Yamazaki, A. Yarkhan, M. Abalenkovs, N. Bagherpour, J. Šístek, D. Stevens, M. Zounon, and S. D. Relton, "PLASMA: Parallel linear algebra software for multicore using OpenMP," ACM Trans. Math. Softw., vol. 45, no. 2, pp. 16–35, 2019.