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Abstract—In this paper, we present the results of our explo-
ration of the applicability of preconditioners computed using
the Markov Chain Monte Carlo Matrix Inversion ((MC)2MI)
method to a variety of linear systems from the domain of quan-
tum chromodynamics, plasma physics and engineering. The latter
two are represented by matrices extracted from BOUT++ and
Nektar++ codes with specific problem statements. Additionally,
we present the scaling behaviour of our implementation for GPUs
and CPUs.
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I. INTRODUCTION

Solving linear systems of equations in the form of Ax = b,
where A ∈ {R,C}n×n or inverting a matrix A is of unquestion-

able importance in many scientific fields. Iterative solvers such

as generalized minimal residuals (GMRES) or bi-conjugate

gradient (BiCG/BiCGstab) solvers are used widely to compute

the solutions of these systems and such approaches are often

the method of choice due to their predictability and reliability

when considering accuracy and speed. They, however, may

become prohibitive for large-scale problems as they can be

very time consuming to compute. The complexity of these

methods, in the serial case, is O(kn2) for dense matrices in the

iterative methods case and O(n3) for direct methods with dense

matrices while solving linear systems if common elimination or

annihilation schemes (e.g. Gaussian elimination, Gauss-Jordan

methods) are employed [1]. Iterative methods hence often rely

on preconditioners to speed up the computations and/or to

ensure faster convergence.

Monte Carlo (MC) method’s complexity is linear in matrix

size [2], [3] and can quickly yield a rough estimate of the

solution by sampling a random variable whose mathematical

expectation is the desired solution. For some practical problems,

an estimate is sufficient or even favourable, due to the

accuracy of the underlying data. Therefore, it should be pointed

out, that Monte Carlo methods may be efficiently used as

preconditioners.

Depending on the method used to compute the preconditioner,

the savings and results vary. A very sparse preconditioner may

be computed quickly, but it is unlikely to greatly reduce the run

time to solution. On the other hand, computing a rather dense

preconditioner is computationally expensive and might be time

or cost-prohibitive. Therefore, finding a good preconditioner

that is computationally efficient, while still providing substantial

improvement to the iterative solution process, is a worthwhile

research topic.

We have improved on the developments presented in [4]

and [5] by expanding the application to complex matrices and

incorporating symmetry conditions. Here we present the results

of our exploration of the applicability of these improvements

and the overall method to a set of linear systems encountered

in physics and engineering - specifically in lattice quantum

chromodynamics (LQCD) and plasma physics simulations.

The latter is performed using BOUT++ [6] and Nektar++ [7]

and hence required extraction of system matrices from these

frameworks since ((MC)2MI) currently still requires a matrix to

be explicitly present. Additionally, we illustrate the scalability

of this method across multiple computing devices.

The next section provides a basic overview of the method,

delineating introduced changes. Section III shows the approach

and methodology applied in the enhancement of the parallel

implementations. Section IV presents the considered cases and

the corresponding results and analysis. Section V summarises

the results and outlines the future work.

II. MONTE CARLO APPROACH

Monte Carlo methods are probabilistic methods that use

random numbers to either simulate a stochastic behaviour

or to estimate the solution of a problem via sampling of

a (appropriately chosen) random variable. They are good

candidates for parallelisation because many independent sam-

ples are used to estimate the solution. These samples can be

calculated in parallel, thereby speeding up the solution-finding

process. Since Monte Carlo methods possess the following main

generic properties [2], [3]: efficient distribution of the compute

data, minimum communication during the computation and

increased precision being achieved by adding extra refinement

computations, it is not surprising that they are a mainstay in

the domain of High-Performance Computing. A weak point of

Monte Carlo methods, especially in parallel environments, is

their dependency upon the availability of independent (pseudo)

random numbers to produce acceptable results.

A. Algorithm

The core algorithm remains unchanged and has been pre-

sented in [4]. Differing from the previous version here we do
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not eliminate entries that would result in negligible transition

probabilities for a Markov Chain simulation. Although fruitful

if done correctly, this approach is ultimately a preprocessing

technique and not the subject of the analysis presented here.

Additionally, it does not generalize to arbitrary inputs, since

the truncation thresholds of matrix entries are dependent on

the system the matrix represents.

Algorithm 1: Monte Carlo Algorithm for Inverting General

Matrices

1) Read in matrix B

a) Input matrix B, parameters ε and δ

2) Determine if B† = B. If true set isSymm to true.

3) Calculate intermediate matrices (B̂, B1)

a) Split B = B̂ − (B̂ −B), where B̂ is a diagonally

dominant matrix: b̂ij = bij + δijαj ||B||
b) B1 := diag(B̂).

4) Perform row-scaling on B̂ to enforce unit diagonal: B̂ :=
B−1

1 B̂.

5) Subtract the identity matrix from the scaled B̂ to obtain

a matrix C s.t. diag(C) = {0, . . . , 0}
6) Compute the transition probability matrix P s.t. pi,j =

|ci,j |∑
j |ci,j | .

7) Perform a random walk on the matrix C using P as

transition probabilities and accumulate results into the

B̂−1 matrix.

8) Recovery of B−1 from B̂−1

a) Compute B̂−1 := B̂−1B−1
1

b) Compute S = B̂ −B

i) Define Si ∈ C
n×n, where i = 1, 2, . . . ,M =

nnz(S) where M is the number of non-zero

elements of S, in a way that each Si has just

one of the non-zero elements of matrix S.

ii) Set B−1
n := B̂−1

iii) Apply B−1
i−1 = B−1

i +
B−1

i SiB
−1
i

1−Tr(B−1
i Si)

for i =

n, n− 1, . . . , 1

c) Then B−1 = B−1
0

9) If isSymm = true B−1 := (B−1 + (B−1)†)/2
The definition of the B̂ matrix in step 3 includes contribu-

tions of a norm of B, with different weights αi for each row, to

its diagonal. This ensures that the resulting matrix is (strictly)

diagonally dominant and that the resulting random walks will

terminate. The last step is, in general, necessary in cases where

the input matrix is symmetric, as the preconditioner, being an

approximate inverse, should be symmetric, too. Unfortunately,

the MC iteration - in the formulation presented in [4] - will

yield an asymmetric preconditioner and hence the result needs

to be symmetrized by the above procedure for symmetric

matrices.

We call attention to step 6 of the algorithm, where the

transition probability matrix is computed. The absolute values

are required to ensure meaningful transition probabilities of

the Markov Chain. Simultaneously real and complex inputs

are handled. Our previous implementation of the algorithm

relied on a simplified computation of signs of matrix entries,

which were used to compute B̂. In this paper we present results

of tests with complex input matrices provided to us by our

collaborators in the Exascale Lattice-QCD project (Exalat).

Several enhancements of the algorithm, as well as modifica-

tions concerning GPU implementation, are listed in the next

section and were able to substantially improve its performance

in generating rough inverses of the input matrices. The result

can then be used directly as a preconditioner for solving a

system of linear algebraic equations or further improved. We

propose the use of an iterative refinement process to further

enhance the quality of the preconditioner. The decision of

whether those additional steps are taken is based upon the

required accuracy and can be freely selected, depending on

user requirements.

III. PARALLELIZATION DETAILS AND ISSUES

The steps in the algorithm presented above can be relabelled

in a more legible fashion:

3) Transformation into a diagonally-dominant matrix

4),5) Transformation of the result to suit the Neumann
series expansion

6), 7) Use Monte Carlo method to compute a sparse ap-

proximation of the inverse matrix B̂−1.

8) Recover an approximate inverse of B from B̂−1.

9) Symmetrize the result in case of a (complex) sym-

metric input matrix.

It must be noted that phase 4 (recovery) requires in

general O(n3) operations and hence is generally neglected.

Prior numerical experiments have demonstrated that it is not

compulsory to obtain an effective preconditioner and is in

general an impediment to an efficient preconditioner. The first

step is the notable exception to this rule as it is always applied.

A. GPU implementation

Due to the irregular data access and computation kernels of

short duration the use of the method on GPUs is challenging.

Nonetheless, it is possible to accelerate the computation of

the preconditioner using (MC)2MI if care is taken to keep the

GPU sufficiently busy.

Since the number of different entries visited by a chain is not

known a priori the entire set of Markov Chains is simulated

at once and used to fill a contiguous array corresponding to

one row of the approximate inverse. The results are sorted

by magnitude in descending order and only a prescribed

number of the largest entries are retained in the final sparse

approximate inverse. An extension to multiple GPUs can be

achieved trivially, by splitting the matrix into blocks of rows,

but produces additional overhead when combining the results

of the separate GPUs.

Compared to the host machine the GPU has a very limited

amount of memory and requires a more elaborate approach

to memory handling. Due to memory constraints storage of a

dense block of an inverse on the device is not feasible, and

neither is on-the-fly transfer of computed entries to the host –

due to latency constraints. We have opted to allocate and fill a

block of the sparse inverse on the device and transfer it to the
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TABLE I
MATRIX SET

Matrix Dimension Non-zeros Sparsity Symmetry
circuit5M dc 3,523,317 19,194,193 1.5 · 10−6% symmetric
nonsym r3 a11 20,930 638,733 0.15% asymmetric
sym r6 a11 1,314,306 36,951,316 0.02% symmetric
H2hat 6,144 11,501,568 30.47% hermitian
H2 12,288 4,202,496 2.78% hermitian
NLD 8,192 24,576 4.66 · 10−2% asymmetric

host matrix at the end of the computation. This differs from

our MPI/OpenMP implementation in so far as the computation

of each row requires additional memory management overhead

but the final reduction of the separate blocks of the inverse is

cheaper since the necessary storage and data layout is known

beforehand. The downside being that for some matrices entries

of the inverse may be lost for some rows, whilst others contain

unused entries (= 0). The problem of superfluous 0’s is taken

care of by pruning the entries of the final approximate inverse

after it has been assembled on the host.

IV. NUMERICAL EXPERIMENTS

A. Test cases

The set of matrices chosen for the assessment of the usability

of the method in practical problems is listed in Table I.

The set contains symmetric and non-symmetric matrices of

varying sizes and filling fractions. Matrices nonsym r3 a11 and

sym r6 a11 have been provided by our collaborators and are

representative of systems occurring in climate simulations. The

matrix circuit5M dc has been taken from Florida University’s

matrix collection. Matrices H2, H2hat represent operators in

lattice quantum chromodynamics (LQCD) computations and

the NLD matrix resulted from a finite element discretization

of a non-linear diffusion equation in 1D using BOUT++

and is intended to represent typical applications in plasma

physics. The latter matrices have been used to evaluate whether

((MC)2MI) would be suitable as a preconditioner for problems

in the fields of LQCD and plasma physics.

We have included the very large, extremely sparse cir-

cuit5M dc matrix with the intent to have a sufficient workload

to utilize the computing resources to their maximum for

scalability analyses of the matrix-based implementation.

B. Execution Environment

The software were compiled using GCC 7.3.0 and Open-

MPI 4.0.4 and the numerical experiments on the LQCD and

BOUT++/Nektar++ matrices were performed on the CPUs of

the ScafellPike system hosted at the Hartree Centre. A single

node of this system features two Intel Xeon Gold Skylake

processors (E5-6142 v5, 2.6 GHz, turbo boost up to 3.7 GHz),

sporting 16 cores each. This node is comprised of two NUMA

entities with 94 GB and 96 GB of memory. One Skylake

processor has an L3 cache of 22 MB shared amongst 16 cores,

and cores have individual L2, L1d and L1i caches of 1 MB,

32 KB and 32 KB in size.
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Fig. 1. Execution time of the preconditioner computation for a small matrix
nonsym r3 a11. The small size emphasises the management overhead on the
GPUs.

The computed preconditioners were validated using the

GMRES, CG and BiCGstab implementations provided by

NumPy (1.19.3) run with Python 3.6.2.

Experiments were performed with precisions of ε, δ =
2−3, 2−4 and the scaling of the diagonal was performed using

α = 5. The choice of the above values for ε, δ implies that

the GPUs are likely to be underutilized since earlier results

indicate that ε, δ < 0.01 are to be preferred.

C. Scalability

In Fig. 1 the execution time of the preconditioner computa-

tion using up to 4 P100 GPUs and up to 8 K80 GPUs is shown

for the nonsym r3 a11 matrix. It is evident that the small size

of the matrix, coupled with the moderate precision requirements

results in a severe underutilization of the computing units of

P100s and therefore an over-emphasis of the preprocessing and

memory management overhead. Indeed the runtimes decrease

when scaling up to 4 K80’s, increasing afterwards due to

the management overhead becoming noticeable. For small

matrices, the CPU is a sufficiently powerful device to perform

the computation. This will not hold with increasing precision

of the computation, due to the increase in the amount and

length of Markov chains that will require evaluation.

Considering Fig. 1 one can immediately conclude, that

speed-up of the GPU is going to be non-existent for small

matrices. Furthermore one can see, that for small matrices

the memory management overhead limits the scalability of

the OpenMP/Hybrid version of the code, too. In the case of

hybrid ((MC)2MI) an additional overhead is introduced by

MPI communication.

In the case of the very large matrix circuit5M dc, the

performance gain using GPUs is even more pronounced (c.f.

Fig. 2) and the scalability shows the typical behaviour of the
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Fig. 2. Speed-up of the calculation performed on GPUs in comparison to
CPU cores for the circuit5M dc matrix and a precision of ε = 0.0625.
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Fig. 3. Speed-up of the calculation performed on different architectures in
comparison to the lowest number of processing units chosen for the architecture
for the sym r6 a11 matrix.

method when it is not dominated by memory management

overhead.

The speed-up decreases when using 3 or more GPUs,

which is to be attributed to the overhead introduced by the

memory management. This fact is better demonstrated when

one compares Fig. 3 to Fig. 4, where the speed-up is almost

ideal.

The scalability of the method across multiple devices of the

same architecture is shown in Figs. 3 and 4 and requires

a sufficient amount of work to hide the current memory

management overhead. Here the speed-up is computed w.r.t.

the lowest number of processing units of the architecture.
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Fig. 4. Speed-up of the calculation performed on different architectures in
comparison to the lowest number of processing units chosen for the architecture
for the circuit5M dc matrix.

For the large matrices of the set, the scaling is, as expected,

sub-linear. Furthermore, it can be seen, that the larger matrix

results in better scaling behaviour. This can be attributed to the

increase in the time the GPUs spend performing the MCMC

simulation, thereby reducing the influence of preprocessing

and memory management overhead.

A factor limiting the performance, which has not yet been

eliminated, is the necessity to compact the pre-processed matrix

on the host before the MC iteration may be performed. As

a byline, we would like to remark, that this method has

been implemented to run on an FPGA with the help of our

collaborators at Maxeler. First tests on the circuit5M dc matrix

indicate that a single FPGA could accelerate the computation

of the preconditioner by a factor of ∼ 12.7×, while also

demonstrating that the usage of FPGAs will require careful

analysis of the required precision of the calculations.

D. Practical Usage

In a first trial, we considered the extension of our implemen-

tation to complex input matrices and have applied the method

to compute a preconditioner for LQCD matrices H2, H2hat.
The results depicted in Fig. 5 and 6 for the H2 matrix and

CG and GMRES solvers demonstrate that the method can be

effective for this type of problem. Since the matrix is hermitian

(i.e., complex symmetric) the method of conjugate gradients

(CG) is a natural choice. This intuition is borne out by the

number of steps required by CG and GMRES solvers to achieve

the same relative error of 10−10. It is however surprising, that

as soon as a preconditioner is introduced GMRES becomes

the better choice.

Since CG’s convergence behaviour is strongly dependent

on the system matrix being symmetric (positive definite) it

is not surprising that the number of iterations required when
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Fig. 5. The number of steps required to solve a complex linear system
with the CG solver and H2 as system matrix. Note that the non-symmetric
preconditioner levels out just after dropping below the non-preconditioned
step count.

Fig. 6. The number of steps required for the H2 matrix using GMRES solver

using an asymmetric preconditioner does not decrease, whereas

when the preconditioner is symmetric the number of iterations

steadily decreases. This is intuitively pleasing, as a higher

precision (smaller ε, δ) of ((MC)2MI) will result in a more

asymmetric matrix. We currently have no explanation for the

increase in the number of steps required for PCG to converge

if the preconditioner has been computed to a low precision

( 12 ,
1
4 ). This anomaly is currently under investigation.

In Fig. 7 we present the evolution of the number of iterations

required by the (non-)preconditioned GMRES and BiCGstab

solvers for a solution of a non-linear diffusion equation in

1D (NLD matrix). Note that the values given in Table I are
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Fig. 7. The number of steps taken by GMRES and BiCGstab methods for
a non-linear diffusion problem with and without the asymmetric ((MC)2MI)
preconditioner. P ·A signifies a preconditioned solver.

provided only as an example for the largest matrix considered.

As can be observed usage of the ((MC)2MI) preconditioner

will consistently reduce the number of steps required by

GMRES. For BiCGstab usage of this preconditioner appears

to increase the number of iterations for very small matrices

n < 1000. Currently, we attribute this to the random nature

of the preconditioner computation. Further analysis of this

behaviour is warranted, but not of primary concern since small

matrices are not the primary application area for iterative

solvers and constitute rather academic exercises. With the

growing dimension of the matrix usage of the preconditioner

becomes increasingly beneficial, especially if GMRES is

used as a solver. This indicates that it will be worthwhile

to implement ((MC)2MI) as a matrix-free preconditioner in

BOUT++, resp. PETSc [8].

In Fig. 8 we observe a varying behaviour for a variety of

equations: Helmholtz equation (H), steady advection-diffusion

equation (SAD) and unsteady advection-diffusion (UAD)

equation with varying order of finite elements. The last number

signifies the dimension of the matrix. Here the use of the

((MC)2MI) preconditioner leads to a consistently lower number

of steps for BiCGstab, yet for the unsteady advection-diffusion

problem, it consistently yields a higher number of steps required.

This seems to suggest that the method is not suitable for such

problems, but further analysis is required to pinpoint the exact

reason for this behaviour as it still eludes us.

V. CONCLUSIONS AND FUTURE WORK

A basic understanding of modern architectures suggests that

random access to data may be a performance-limiting factor.

Profiling results obtained for the OpenMP implementation

support this intuition since a large proportion of the simulation

time is spent waiting for data and on memory management.

48



 100

 1000

 10000

H 1
31

2

SA
D 2

28
1

UAD
1 
22

5

UAD
2 
22

5

UAD
3 
22

5

UAD
4 
22

5

It
e

ra
ti
o
n
s

Matrix name order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)
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((MC)2MI) preconditioner. P · A signifies a preconditioned solver and the
last number in the block label signifies the dimension of the matrix.

Orchestration of the GPU threads in a way as to reduce

divergences appears possible but will require further work as

will the reduction of the load-imbalance. Implementation of the

method on FPGAs suggests that said architecture can be used as

accelerators, much like GPUs can be and the preliminary results

suggest that this architecture is worth further consideration,

especially in a modular cluster environment.

Numerical experiments presented above have demonstrated

that ((MC)2MI) can be applied to problems currently under

consideration. The next development step will be to implement

the ((MC)2MI) preconditioner as a matrix-free method to

enable in-situ testing with frameworks such as Nektar++ and

BOUT++, as well as with our academic partners from the

University of Portsmouth (LQCD). We will give preference to

implementing a matrix-free version for BOUT++ since the latter

relies on PETSc and would hence enable us to investigate the

methods’ suitability to a much more diverse set of problems, i.e.,

topological optimization of mechanical and optical structures.

Hence we envision a development of the matrix-free imple-

mentation for the CPU in the near future. A multi-architecture

implementation that will allow us to run the preconditioner

computation on multiple device types is planned thereafter.

VI. ACKNOWLEDGEMENTS

We would like to thank the United Kingdom Atomic Energy

Authority (UKAEA) for the inclusion into the NEPTUNE

project and especially to Sue Thorne (Rutherford Appleton

Laboratory, STFC), Benjamin Dudson (The University of York)

and Chris Cantwell (Imperial College London) for the active

support in acquiring the necessary matrices. Additionally, we

are very grateful to Tobias Becker, Gary Robinson and Bastiaan

Willem Kwaadgras (Maxeler) for their help in porting the

((MC)2MI) code to the FPGA hardware. We are also grateful

for the partial support by EPSRC through Lattice Field Theory

at the Exascale frontier project (EP/V001248/1) and Prof.

Antonio Rago, University of Plymouth, UK, for providing

LQCD related matrices.

REFERENCES

[1] G. Golub and C. Loan, Matrix computations, ser. Johns Hopkins studies
in the mathematical sciences. Johns Hopkins University Press, 1996.
[Online]. Available: http://books.google.es/books?id=mlOa7wPX6OYC

[2] J. Straßburg and V. N. Alexandrov, “Enhancing monte carlo
preconditioning methods for matrix computations,” in Proceedings of the
International Conference on Computational Science, ICCS 2014, Cairns,
Queensland, Australia, 10-12 June, 2014, 2014, pp. 1580–1589. [Online].
Available: http://dx.doi.org/10.1016/j.procs.2014.05.143

[3] V. N. Alexandrov and O. A. Esquivel-Flores, “Towards monte carlo
preconditioning approach and hybrid monte carlo algorithms for
matrix computations,” Computers & Mathematics with Applications,
vol. 70, no. 11, pp. 2709–2718, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.camwa.2015.08.035

[4] A. Lebedev and V. Alexandrov, “On advanced monte carlo methods for
linear algebra on advanced accelerator architectures.” in 2018 IEEE/ACM
9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA), 2018.
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